Claim Missing Document
Check
Articles

Found 3 Documents
Search

INTERPRETASI GLOBAL HADIS RUKYAT HILAL Rusmin, Pranoto Hidaya; Rohman, Arief Syaichu; Herdiwijaya, Dhani; Khaerani, Izzah Faizah Siti Rusydati; Pahlevi, Reza; Darmawan, Dadang
Mutawatir : Jurnal Keilmuan Tafsir Hadith Vol. 7 No. 1 (2017): JUNI
Publisher : Program Studi Perbandingan Agama, Fakultas Ushuluddin dan Filsafat, Universitas Islam Negeri (UIN) Sunan Ampel Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (619.584 KB) | DOI: 10.15642/mutawatir.2017.7.1.50-75

Abstract

Before Islamic Calendar begins, Muslims were used to wait for the earliest visible crescent (hilâl), which marks the beginning of Ramadan. The determination of the beginning of Ramadan is based on the rukyat al-hilâl hadith. Because the hilâl visibility on the earth surface is not the same, it results the differences on the beginning of Ramadan fasting. In addition, the sighting hilâl method can only determine the next 29 days, it cannot reach for the next month and even for the next year. These are the main reasons for re-interpretation of the rukyat al-hilâl hadith from global perspective. From this study, it is found that the context in the Qur?an, related to the Ramadan fasting, is fasting in one full month, 29 or 30 days, according to the duration of the lunar synodic cycle. However, the condition of the people and the science at that time has not developed yet, which is the cause of calculation (h}isâb) verses in the Qur?an cannot be used. When they have developed, the calculation verses in the Qur?an can be used to determine the number of days in a calendar month. This will produce a global calendar for mankind.
Evaluasi Kejadian dan Indikator Fisis Skala Cuaca Antariksa berdasarkan Variasi Angin Matahari tahun 1963 – 2023 (Evaluation Occurance and Physical Indicators of Space Weather Scale based on Solar Wind Variations in 1963 to 2023) Herdiwijaya, Dhani
Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO) Vol. 6 (2024): Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (Senastindo)
Publisher : Akademi Angkatan Udara

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Space weather refers to changes in environmental conditions in near-Earth space as a consequence of the behaviour of the Sun, the nature of the magnetic field of interplanetary space, and the Earth's atmosphere, in particular the magnetosphere and ionosphere layers. The components of space weather are plasma particles, electromagnetic energy and magnetic fields. Solar activity always emits plasma particles into space and creates a plasma stream known as the solar wind. The energetic phenomenon of solar activity comes from solar explosions and corona mass ejections that can cause extreme space weather, namely geomagnetic storms. The intense energy of these storms can damage satellites, disable satellite communications and navigation, disrupt power grids on Earth's surface, and be dangerous to spacecraft. The NOAA (National Oceanographic and Atmospheric Agency) Space Weather Scale, USA was introduced as a way to communicate to the general public about current and future space weather conditions and their possible impacts on humans and space technology systems. The scale is useful for space technology users and those interested in the effects of space weather on spacecraft. The scale describes space environment disturbances for three types of events: geomagnetic storms, solar radiation storms, and radio blackouts. The scale has levels from low to high that are numbered 1 to 5, indicating severity. Each level also lists the likelihood of the impact occurring, the frequency with which the event occurs, and provides a measure of the intensity of the physical cause. The NOAA space weather scale evaluation was conducted for 60 years of solar wind data. Geomagnetic storms with Kp index indicator (N=525960) extreme scale (scale 5) with Kp index of 9 is only 0.11% (N=597). Solar radiation storms with an indicator of proton flux energy> 10 MeV (N = 365015) there are no extreme scale achievements, namely 100 000 particles. The highest flux was 67749 particles (scale 4). Most of the flux (99.85%) was below 1000 proton particles. The extreme radio storm (scale 5), with a solar flare strength of more than X20, has only occurred five times (from 1976 to 2023).
Koneksi Matahari-Bumi 25 - 26 Agustus 2018: CME, MC, dan Badai Geomagnetik Kuat Khamdani, Muhamad; Herdiwijaya, Dhani
Sunan Kalijaga Journal of Physics Vol. 2 No. 1 (2020): Sunan Kalijaga Journal of Physics
Publisher : Prodi Fisika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Basis Revolusi Industri 4.0 adalah perkembangan teknologi, termasuk teknologi informasi dan komunikasi yang sangat rentan terdampak cuaca antariksa. Baik berupa gangguan sementara atau kerusakan permanen pada sistem teknologi landas Bumi dan, terlebih teknologi ruang angkasa. Dampak masif badai geomagnetik menjadikannya dianggap sebagai inti dari cuaca antariksa. Data per jam parameter geomagnet (indeks Dst) menunjukkan terjadinya badai geomagnetik kuat selama 9 jam pada 26 Agustus 2018. Puncak badai geomagnetik kuat ini terjadi pada pukul 06:00 UT dengan indeks Dst -174 nT. Tujuan dari penelitian adalah mengetahui penyebab badai geomagnetik kuat yang terjadi pada fase menurun siklus Matahari ke-24, baik yang berada di ruang antar planet maupun di permukaan Matahari. Data plasma angin surya, medan magnet antar planet, dan parameter geomagnet yang digunakan dalam penelitian diperoleh dari laman OMNIWeb Plus yang disediakan oleh The Space Physics Data Facility (SPDF) dengan resolusi satu jam, sementara data lontaran massa korona (CME) diperoleh dari laman katalog CME yang dihasilkan dan dikelola oleh Coordinate Data Analysis Workshop (CDAW) Data Center. Berdasarkan analisis data (kecepatan dan temperatur) plasma dan rapat proton angin surya, medan magnet antar planet (komponen By dan Bz), dan turunan keduanya, kami menemukan awan magnetik (MC) di ruang antar planet. Dengan demikian, dapat disimpulkan bahwa penyebab badai geomagnetik ini adalah lontaran massa korona yang terdapat di ruang antar planet (ICME). Lebih lanjut, keberadaan CME dan kondisi permukaan Matahari didiskusikan dalam tulisan ini. Penelitian ini penting untuk mematangkan pengetahuan dan teknologi yang dikembangkan untuk memprediksi cuaca antariksa beserta mitigasi dampaknya.