Claim Missing Document
Check
Articles

Found 1 Documents
Search

BICLUSTERING APPLICATION IN INDONESIAN ECONOMIC AND PANDEMIC VULNERABILITY Ningsih, Wiwik Andriyani Lestari; Sumertajaya, I Made; Saefuddin, Asep
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 4 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (997.792 KB) | DOI: 10.30598/barekengvol16iss4pp1453-1464

Abstract

Biclustering is an analytical tool to group data from two dimensions simultaneously. The analysis was first introduced by Hartigan (1972) and applied by Cheng and Church (2000) to the gene expression matrix. The Cheng and Church (CC) algorithm is a popular biclustering algorithm and has been widely applied outside the field of biological data in recent years. This algorithm application in economic and Covid-19 pandemic vulnerability cases is exciting and essential to do in order to get an overview of the spatial pattern and characteristics of the bicluster of economic and COVID-19 pandemic vulnerability in Indonesia. This study uses secondary data from some ministries. Forming a bicluster using the CC algorithm requires determining the delta threshold so that several types of delta thresholds are formed to choose the best (optimum) using the evaluation of the average value of mean square residue (MSR) to volume ratios. The similarity of the optimum bi-cluster with the other is also seen based on the Liu and Wang index values. The 0.01 delta threshold is chosen as the optimum threshold because it produces the smallest average value of MSR to volume ratios (0.00032). Based on Liu and Wang Index values, the optimum threshold has a similarity level below 50% with other types of delta thresholds, so the threshold is the best unique threshold. The optimum threshold resulted in six biclusters (six spatial patterns). Most regions in Indonesia (11 provinces) tend to have low economic and COVID-19 pandemic vulnerability in the first spatial pattern characteristic variables.