Shahab, Muhammad Luthfi
Department Of Mathematics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia.

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Algoritma Genetika Ganda untuk Capacitated Vehicle Routing Problem Muhammad Luthfi Shahab; Mohammad Isa Irawan
Jurnal Sains dan Seni ITS Vol 4, No 2 (2015)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (501.804 KB) | DOI: 10.12962/j23373520.v4i2.11482

Abstract

Capacitated vehicle routing problem (CVRP) adalah salah satu variasi dari vehicle routing problem (VRP) yang menggunakan batasan kapasitas pada kendaraan yang dipakai. Ada banyak metode yang telah diteliti untuk bisa menyelesaikan CVRP, namun penggunaan algoritma genetika masih belum memberikan hasil yang memuaskan. Untuk mempermudah menyelesaikan CVRP, dapat dilakukan dekomposisi pada CVRP agar terbagi menjadi beberapa daerah yang dapat diselesaikan secara independen. Berdasarkan hal tersebut, dirumuskan algoritma genetika ganda yang terlebih dahulu berusaha untuk mendekomposisi CVRP dan kemudian mencari rute terpendek pada setiap daerah menggunakan dua algoritma genetika sederhana yang berbeda. Algoritma genetika ganda kemudian dibandingkan dengan algoritma genetika. Untuk membandingkan dua algoritma tersebut, dibuat empat permasalahan yaitu P50, P75, P100, dan P125 dengan pengujian pada setiap permasalahan menggunakan empat belas variasi kapasitas kendaraan yang berbeda. Didapatkan hasil bahwa algoritma genetika ganda lebih baik dari algoritma genetika dari segi waktu komputasi dan generasi. Dari segi jarak, algoritma genetika ganda juga lebih baik dari algoritma genetika kecuali untuk beberapa kapasitas kendaraan yang kecil pada permasalahan P50 dan P75.
A Genetic Algorithm with Best Combination Operator for the Traveling Salesman Problem Muhammad Luthfi Shahab; Titin J. Ambarwati; Soetrisno Soetrisno; Mohammad Isa Irawan
(IJCSAM) International Journal of Computing Science and Applied Mathematics Vol 5, No 2 (2019)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (390.627 KB) | DOI: 10.12962/j24775401.v5i2.5830

Abstract

In this research, we propose a genetic algorithm with best combination operator (BC(x,y)O) for the traveling salesman problem. The idea of best combination operator is to find the best combination of some disjoint sub-solutions (also the reverse of sub-solutions) from some known solutions. We use BC(2,1)O together with a genetic algorithm. The proposed genetic algorithm uses the swap mutation operator and elitism replacement with filtration for faster computational time. We compare the performances of GA (genetic algorithm without BC(2,1)O), IABC(2,1)O (iterative approach of BC(2,1)O), and GABC(2,1)O (genetic algorithm with BC(2,1)O). We have tested GA, IABC(2,1)O, and GABC(2,1)O three times and pick the best solution on 50 problems from TSPLIB. From those 50 problems, the average of the accuracy from GA, IABC(2,1)O, and GABC(2,1)O are 65.12%, 94.21%, and 99.82% respectively.
Sequence Alignment Using Nature-Inspired Metaheuristic Algorithms Muhammad Luthfi Shahab; Mohammad Isa Irawan
(IJCSAM) International Journal of Computing Science and Applied Mathematics Vol 3, No 1 (2017)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (142.567 KB) | DOI: 10.12962/j24775401.v3i1.2118

Abstract

The most basic process in sequence analysis is sequence alignment, usually solved by dynamic programming Needleman-Wunsch algorithm. However, Needleman-Wunsch algorithm has some lack when the length of the sequence which is aligned is big enough. Because of that, sequence alignment is solved by metaheuristic algorithms. In the present, there are a lot of new metaheuristic algorithms based on natural behavior of some species, we usually call them as nature-inspired metaheuristic algorithms. Some of those algorithm that are more efficient are firefly algorithm, cuckoo search, and flower pollination algorithm. In this research, we use those algorithms to solve sequence alignment. The results show that those algorithms can be used to solve sequence alignment with good result and linear time computation.
Klasifikasi Respons Terhadap Vaksinasi Covid-19 Berdasarkan Tweets Menggunakan Attention-Based Long Short Term Memory Diva Zannuba; Bandung Arry Sanjoyo; Muhammad Luthfi Shahab
Jurnal Sains dan Seni ITS Vol 11, No 3 (2022)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23373520.v11i3.82628

Abstract

Media sosial memudahkan masyarakat dalam mendapatkan informasi dan menuangkan pendapat, saran atau kritiknya dalam peristiwa tertentu. Vaksinasi virus COVID-19 di Indonesia yang sedang hangat diperbicangkan dan mendapatkan beragam respons dari masyarakat baik pro maupun kontra, dapat dimanfaatkan untuk melakukan analisis terhadap respons tersebut. Untuk mendukung analisis tersebut, dilakukan klasifikasi respons dari masyarakat Indonesia terhadap vaksinasi COVID-19 menjadi tiga kelas yaitu negatif, netral, dan positif. Untuk proses klasifikasi respons tersebut, diimplementasikan metode Attentional-based Long Short Term Memory atau A-LSTM. Disisi lain, penelitian ini juga mengimplementasikan Bidirectional Encoder Representation Transformer (BERT) sebagai metode pada proses tokenisasi untuk memperoleh representasi fitur dari data Tweet sehingga membantu proses pelatihan A-LSTM. Proses evaluasi dilakukan dengan menggunakan dataset Tweets Bahasa Indonesia dari media sosial Twitter dimulai dari diangkatnya isu vaksinasi COVID-19 di Indonesia. Hasil dari metode ini menunjukkan kinerja yang baik dengan nilai akurasi sebesar 82%.