Claim Missing Document
Check
Articles

Found 4 Documents
Search

Modeling of terahertz radiation absorption temperature distribution in biological tissue of a cattle using Simulink-MATLAB model Kurnia, Dewi; Hamdi, Muhammad; Muhammad, Juandi; Saktioto, Saktioto; Yupapin, Preecha; Abdullah, Hewa Yaseen
Science, Technology and Communication Journal Vol. 1 No. 2 (2021): SINTECHCOM Journal (February 2021)
Publisher : Lembaga Studi Pendidikan and Rekayasa Alam Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59190/stc.v1i2.6

Abstract

Terahertz radiation (THz) has interesting and effective properties in the field of biomedical imaging techniques, this is because of its ability to interact easily, is not ionized, and does not damage biological tissue. The purpose of this study was to determine the effect of THz radiation power density on temperature distribution and heat production in bovine biological tissue consisting of skin, fat, and muscle using a modeling approach. This study uses biophysical computation techniques with the Simulink-MATLAB model in the 0.1 – 1 THz frequency range, 50 – 150 mW power, and 5 – 25 mW/mm3 power density. Temperature distribution modeling is carried out in two ways, namely with different power densities and variations in the circumference of the THz radiation source. The results showed that the higher the power density used, the greater the absorbed radiation energy with increasing temperature. This causes the temperature distribution in the biological tissue to be wider and the production of heat in the tissue will increase. The results of imaging analysis of temperature distribution to depth in bovine biological tissue, show that fat tissue has less heat production compared to other tissues. The comparison of experimental data and modeling results shows an error percentage of 1.09%.
Non-concentric single-mode optical fiber dispersion Basdyo, Doni; Zairmi, Yoli; Yupapin, Preecha
Science, Technology and Communication Journal Vol. 3 No. 1 (2022): SINTECHCOM Journal (October 2022)
Publisher : Lembaga Studi Pendidikan and Rekayasa Alam Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59190/stc.v3i1.220

Abstract

The application of wave transmission in telecommunication optical fiber still has problems in the form of dispersion. For this reason, it is necessary to design and operate optical fiber dispersion that is shifted or not concentric with simulation as the first step in designing which is easier, cheaper and has a high level of accuracy. The purpose of this study was to analyze the design and operation of the displaced optical fiber dispersion and determine the wavelength value at the minimum dispersion value using OptiFiber software. The input parameters consist of the refractive index of the optical fiber in the range of 1.4615 to 1.44692 and the wavelength range of 1.4 µm to 1.5 µm. The dispersion result obtained is a minimum wavelength of 1.5506 µm. This result is close to the theoretical value of 1.55 µm with attenuation and dispersion at one wavelength point. The results of this study can be used for validation in experiments.
Core multi-layer dispersion on single-mode optical fiber Ramadhan, Khaikal; Irawan, Dedi; Yupapin, Preecha
Science, Technology and Communication Journal Vol. 3 No. 3 (2023): SINTECHCOM Journal (June 2023)
Publisher : Lembaga Studi Pendidikan and Rekayasa Alam Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59190/stc.v3i3.235

Abstract

Optical technology has experienced extraordinary developments in recent years and the development of optical fibers continues to be carried out for various applications, namely optical sensors, long-distance communications, and health monitoring so that they can be applied in monitoring high temperatures in petroleum plants. Optical fiber has properties that cannot interfere with electromagnetic waves, which is an advantage compared to conventional cables besides optical fibers are able to transmit data quickly and reach very far across continents. However, the signal in the optical fiber that is carried in the form of pulses can experience widening, this widening is a result of changes in the refractive index, constituent materials, and losses due to fiber optic connection which will decrease the quality of the received signal. One way to reduce the pulse widening in a single-mode optical fiber is to split the fiber core into several layers to obtain zero dispersion in the single-mode optical fiber. Another thing is that we can influence the effect of the inner layer of the fiber core on the desired zero dispersion. After designing the optical core by making several layers, it was found that the dispersion was not found in the 6 and 7 core layers while the fibers with layers 2, 3, 4, and 5 had different wavelengths for zero dispersion. Furthermore, the effective area or area that is passed by the optical signal and the largest fiber mode diameter is obtained on 3-layer fibers with a value of 230.0454 mm2 and 17.1144 mm each seen from the delay of layer groups 2, 5, 6, and 7 experiencing a group decline for each wavelength while fiber With layers 3 and 4 experiencing an increase in group delay from the experimental data it was found that cores with 6 and 7 layers would not find the desired zero dispersion while optical fibers with the best layers transmit signals were cores with 3 layers.
Potential multi-detection manifestation of ultra-sensitive sensors based on ZnO thin films and metamaterials Defrianto, Defrianto; Soerbakti, Yan; Saktioto, Saktioto; Rini, Ari Sulistyo; Fadhali, Mohammed; Yupapin, Preecha
Science, Technology and Communication Journal Vol. 5 No. 1 (2024): SINTECHCOM Journal (October 2024)
Publisher : Lembaga Studi Pendidikan and Rekayasa Alam Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59190/stc.v5i1.265

Abstract

This study aims to observe the ability of a thin layer of zinc oxide (ZnO) which is applied to sensor technology. Currently, the low detection limit of the sensor is a problem in its use. Metamaterials offer resonant properties in increasing sensitivity, but their performance is still below the current high modern technology. The high engineering properties of metamaterials provide opportunities for realizing renewable metamaterials. ZnO thin layer semiconductor material as a transparent conductive oxide can provide a wide detection potential. The ability of ZnO thin films to be adapted to metamaterial sensors can be further investigated and improved for the future.