Claim Missing Document
Check
Articles

Found 6 Documents
Search

Statistical analysis for chemical compound based on several species of aquilaria essential oil Ahmad Sabri, Noor Aida Syakira; Nik Kamaruzaman, Nik Fasha Edora; Ismail, Nurlaila; Yusoff, Zakiah Mohd; Almisreb, Ali Abd; Tajuddin, Saiful Nizam; Taib, Mohd Nasir
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp3663-3673

Abstract

The paper examines the characterization of Aquilaria essential oils from different species, namely Aquilaria malaccensis, Aquilaria beccariana, Aquilaria crassna, and Aquilaria subintegra, renowned for agarwood production in Malaysia. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID) were employed for extracting essential oil data, facilitating compound identification. Subsequently, a preliminary analysis focused on classifying significant chemical compounds in the samples. The study then utilized boxplot pre-processing for visualizing and interpreting data distribution. The statistical analyses were performed using MATLAB software version R2021b, considering two key parameters which are the peak area (%) of significant chemical compounds and the classification of Aquilaria species (A. beccariana, A. malaccensis, A. crassna, and A. subintegra) based on their chemical composition. The results, presented through boxplot analyses, demonstrated a clear representation of the parameters and their distribution in the data. This method not only confirmed the potential of boxplot analysis in statistical evaluation of significant compounds in Aquilaria essential oil but also suggested its applicability for further classification work.
Securing high-value electronic equipment: an internet of things driven approach for camera security Nordin, Siti Aminah; Yusoff, Zakiah Mohd; Hanif Faisal, Muhammad; Kamarudin, Khairul
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i3.pp2763-2772

Abstract

This article addresses pressing challenge of securing high-value electronic equipment, notably cameras, which face dual threats of damage in high humidity conditions and theft due to their significant market value. To confront these issues, the study introduces innovative internet of things (IoT)-driven approach aimed at strengthening conventional storage box security. Central to this approach is integration of IoT technologies, such as Arduino and ESP32, to develop advanced safety storage box. This enhanced system features essential hardware components, including buzzer, password-protected keypad, radio frequency identification reader, and DHT11 sensor for humidity monitoring. Additionally, mobile alarm system is incorporated to promptly alert owners of any detected movement vibrations, thereby augmenting security measures. By leveraging these components, proposed methodology seeks to mitigate risks associated with camera theft and fungal contamination, thereby advancing electronic device security. The expected outcome is marked enhancement in protection of high-value electronic equipment, particularly cameras, through continuous real-time monitoring and proactive security measures. This research underscore’s critical role of IoT technologies in fortifying security measures for valuable electronic assets, contributing significantly to ongoing discourse on innovative strategies in field. Through its comprehensive approach, this study aims to offer practical solutions to mitigate security risks and safeguard electronic equipment against potential threats, thereby addressing critical need in realm of electronic device security.
Robust k-NN approach for classifying Aquilaria oil species by compounds Ahmad Sabri, Noor Aida Syakira; Syafiqah Noramli, Nur Athirah; Nik Kamaruzaman, Nik Fasha Edora; Ismail, Nurlaila; Yusoff, Zakiah Mohd; Almisreb, Ali Abd; Tajuddin, Saiful Nizam; Taib, Mohd Nasir
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp178-189

Abstract

Accurate classification of Aquilaria oil species is essential for ensuring the quality and authenticity of agarwood oils, which are widely used in perfumes and traditional medicine. This study investigated the effectiveness of the k-nearest neighbours (k-NN) machine learning model for classifying Aquilaria oil species based on four significant chemical compounds: dihyro-βagarofuran, δ-guaiene, 10-epi-γ-eudesmol, and γ-eudesmol. The dataset comprised 480 samples of Aquilaria oil, which were analyzed using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID). The k-NN model, with an optimal k-value of 10 and using euclidean distance as the distance metric, achieved 100% accuracy, sensitivity, specificity, and precision in both training and testing datasets. These results demonstrate the robustness of k-NN in species identification, highlighting the discriminative power of the selected compounds. This study verifies that the integration of chemical profiling with machine learning offers a scalable solution for accurate species identification in the essential oil industry. Future work could explore hybrid models and data expansion techniques to further enhance the classification performance in more complex environmental conditions.
Unraveling the relationships among essential oil compounds in Aquilaria species using GC-MS and GC-FID techniques Syafiqah Noramli, Nur Athirah; Ahmad Sabri, Noor Aida Syakira; Roslan, Muhammad Ikhsan; Ismail, Nurlaila; Yusoff, Zakiah Mohd; Taib, Mohd Nasir
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp167-177

Abstract

Agarwood, a prized non-timber resource from the Aquilaria genus, is highly valued for its aromatic and medicinal properties, playing a significant role in the healthcare, fragrance, and pharmaceutical industries. This research analyzes essential oils from four Aquilaria species-A. beccariana, A. malaccensis, A. crassna, and A. subintegra-using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The primary objective is to optimize classification efficiency by reducing computational time and reducing multicollinearity through feature selection. Pearson correlation analysis revealed strong relationships among six chemical compounds-β-selinene (A), dihydro-β-agarofuran (B), δguaiene (C), 10-epi-γ-eudesmol (D), γ-eudesmol (E), and pentadecanoic acid (F). Through feature selection, the three most significant compoundsdihydro-β-agarofuran (B), γ-eudesmol (D), and 10-epi-γ-eudesmol (E)-were identified, achieving a remarkable 90.02% reduction in computational time (from 0.0403 to 0.0040 seconds). These findings highlight the effectiveness of structured feature selection in refining essential oil profiling and enhancing species classification accuracy. Future research directions include exploring machine learning-based feature selection techniques to further streamline feature reduction processes and expand the scope of essential oil authentication. This study contributes to advancing the scientific understanding and practical utilization of agarwood essential oils, paving the way for more efficient and reliable analytical frameworks.
A ten-year retrospective (2014-2024): Bibliometric insights into the study of internet of things in engineering education Yusoff, Zakiah Mohd; Nordin, Siti Aminah; Othman, Norhalida; Bakar, Zahari Abu; Ismail, Nurlaila
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i4.pp4213-4226

Abstract

This article presents a comprehensive ten-year retrospective analysis (2014-2024) of the evolving landscape of internet of things (IoT) studies within engineering education, employing bibliometric insights. The pervasive influence of IoT technologies across diverse domains, including education, underscores the significance of examining its trajectory in engineering education research over the past decade. Recognizing the dynamic nature of this intersection is crucial for educators, researchers, and policymakers to adapt educational strategies to IoT-induced technological shifts. Addressing this imperative, the study conducts a detailed bibliometric review to identify gaps, trends, and areas necessitating further exploration. Methodologically, the study follows a framework involving a comprehensive search of Scopus and Web of Science databases to identify relevant articles. Selected articles undergo bibliometric analysis using the Biblioshiny tool, supplemented by manual verification and additional analysis in Excel. This approach facilitates robust evaluation of citation patterns, co-authorship networks, keyword trends, and publication patterns over the specified timeframe. Anticipated outcomes include the identification of seminal works, key contributors, influential journals, and science mapping. The study aims to unveil emerging themes, track research trends, and provide insights into collaborative networks shaping IoT discourse in engineering education. This analysis offers a roadmap for future research directions, guiding educators and researchers toward fruitful avenues of exploration.
Statistical analysis of agarwood oil chemical compound exists in four species of Aquilaria Zaidi, Amir Hussairi; Al-Hadi, Anis Hazirah ‘Izzati Hasnu; Huzir, Siti Mariatul Hazwa Mohd; Yusoff, Zakiah Mohd; Ismail, Nurlaila; Almisreb, Ali Abd; Tajuddin, Saiful Nizam; Taib, Haji Mohd Nasir
International Journal of Advances in Applied Sciences Vol 13, No 3: September 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v13.i3.pp727-732

Abstract

Aquilaria, renowned for its agarwood, and valued for its aromatic wood and rich resin, finds use in cosmetics, fragrances, incense, and medicine. Identifying the agarwood-producing species among 21 species of Aquilaria is challenging. This study analyzes chemical compounds in agarwood oil from 4 Aquilaria species: Aquilaria beccariana, Aquilaria crassna, Aquilaria malaccensis, and Aquilaria subintegra using gas chromatography-flame ionization detector (GC-FID). Statistical analysis explores compound abundance, employing methods like mean and Z-score tests. This analysis summarizes those 14 compounds that are consistently present based on zero and non-zero observations, and the Z-score test highlights five chemical compounds, with three compounds appearing in both analyses. These compounds can serve as a reference for future studies on Aquilaria species and agarwood oil, enhancing classification efforts.