Claim Missing Document
Check
Articles

Found 2 Documents
Search

Python scikit-fuzzy: developing a fuzzy expert system for diabetes diagnosis Rosli Razak, Tajul; Zia Ul-Saufie, Ahmad; Yusoff, Mohamad Hanis; Hafiz Ismail, Mohammad; Mohd Fauzi, Shukor Sanim; Mohd Zaki, Nurul Ain
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i2.pp1398-1407

Abstract

Nowadays, improvements in diabetes detection that provide patients with vital information are needed. This is due to the fact that Diabetes mellitus has generated a worldwide epidemic that costs society and people. Also, patients tend to misread symptoms, and clinicians who collect insufficient data may produce erroneous outcomes. Therefore, this study aims to demonstrate that a programme that integrates expert advice such as decisions, recommendations, or solutions is an excellent method for reducing the incidence of diabetes. Specifically, this study intends to implement a fuzzy expert system that can detect and report the early stages of diabetes as a viable approach. Furthermore, since this programme is available to everyone, people may easily self-diagnose themselves if they have a blood glucose monitoring device. However, developing the fuzzy expert system for real-world situations, such as diabetes patients, using any programming tools is not straightforward. Therefore, this study will provide a comprehensive approach to constructing a fuzzy expert system using the popular programming language Python.
THE GENERALIZED SPACE-TIME ARIMA (GSTARIMA) MODEL FOR PREDICTING NITROGEN MONOXIDE TO MITIGATE EID AL- FITR AIR POLLUTION IN SURABAYA Khaulasari, Hani; Rini Novitasari, Dian Candra; Setyawati, Maunah; Maulana, Jeneiro; Mohd Fauzi, Shukor Sanim
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 20 No 1 (2026): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol20iss1pp0069-0086

Abstract

Air quality is a crucial factor due to its significant impact on environmental sustainability and public health. One of the major pollutants affecting air quality is Nitrogen Monoxide (NO), especially during periods of increased human mobility such as Eid al-Fitr. Monitoring and predicting NO levels are essential for early mitigation efforts. This study aims to evaluate the performance of the Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA) model with three types of spatial weighting schemes and compare it with other forecasting methods, namely ARIMA, VARIMA, and Support Vector Regression (SVR), in predicting NO concentrations in Surabaya for April 2024. The data used in this study consist of daily NO concentration measurements obtained from the Surabaya City Environment Agency’s monitoring stations located at SPKU Tandes, SPKU Wonorejo, and SPKU Kebonsari, covering the period from January 2023 to March 2024. The GSTARIMA model was selected for its capability to capture both spatial and temporal dependencies across monitoring locations. As an extension of the ARIMA model, GSTARIMA incorporates spatial weight matrices to model spatial heterogeneity. Parameter estimation was conducted using the Ordinary Least Squares (OLS) method. The results indicate that the GSTARIMA model with Inverse Distance Weighting (IDW) and order (3,1,0)₁ in the first spatial order yields the most accurate predictions, outperforming ARIMA, VARIMA, and SVR models. The model produced the lowest Symmetric Mean Absolute Percentage Error (sMAPE) of 0.93% and Root Mean Square Error (RMSE) of 5.32. A notable spike in NO concentrations was observed between April 23 and 25, 2024, coinciding with the post-Eid al-Fitr return flow, indicating a surge in population mobility.