Mohamad, Mohd Saberi
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Advanced tourist arrival forecasting: a synergistic approach using LSTM, Hilbert-Huang transform, and random forest Mukhtar, Harun; Remli, Muhammad Akmal; Mohamad, Mohd Saberi; Wan Salihin Wong, Khairul Nizar Syazwan; Ridhollah, Farhan; Deprizon, Deprizon; Soni, Soni; Lisman, Muhammad; Amran, Hasanatul Fu'adah; Sunanto, Sunanto; Ismanto, Edi
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 1: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i1.pp517-526

Abstract

An advanced synergistic approach for forecasting tourist arrivals is presented, integrating long short-term memory (LSTM), Hilbert-Huang transform (HHT), and random forest (RF). LSTM is leveraged for its capability to capture long-term dependencies in sequential data. Additional data from Google Trends (GT) is processed with HHT for feature extraction, followed by feature selection using the RF algorithm. The combined HHT-RF-LSTM model delivers highly accurate forecasts. Evaluation employs regression analysis with metrics such as root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and mean square error (MSE), highlighting the effectiveness of this innovative approach in predicting tourist arrivals. This methodology provides a robust framework for handling limited datasets and improving forecast reliability. By incorporating diverse data sources and advanced preprocessing techniques, the model enhances prediction performance, demonstrating the strong performance of RF in feature selection.
Deep learning-based cryptanalysis in recovering the secret key and plaintext on lightweight cryptography Fatma, Yulia; Remli, Muhammad Akmal; Mohamad, Mohd Saberi; Al Amien, Januar
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp1115-1123

Abstract

The development of machine learning (ML) technologies provide a new development direction for cryptanalysis. Several ML research in the field of cryptanalysis was carried out to identify the cryptographic algorithm used, find out the secret key, and even recover the secret message The first objective of this study is to see how much influence optimization and activation function have on the multi-layer perceptron (MLP) model in performing cryptanalysis. The second research objective, which is to compare the performance of cryptanalysis in recovering keys and the plaintext. Several experiments have been carried out, the observed parameters found that the use of the rectified linear unit (ReLU) activation function and the ADAM optimizer improves the performance of deep learning (DL)-based cryptanalysis as evidenced by a significantly smaller error rate. DL-based cryptanalysis works more effectively in recovering keys than recovering plaintext. DL-based cryptanalysis managed to recover the keys with an average loss of 0.007, an average of 49 epochs, and an average time of 0.178 minutes.