Claim Missing Document
Check
Articles

Found 4 Documents
Search

Comparison of electronic load using linear regulator and boost converter Ayop, Razman; Md Ayob, Shahrin; Tan, Chee Wei; Sutikno, Tole; Abdul Aziz, Mohd Junaidi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 12, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v12.i3.pp1720-1728

Abstract

Direct current (DC) electronic load is a useful equipment for testing the electrical system. It can emulate various load at a high rating. The electronic load requires a power converter to operate and a linear regulator is a common option. Nonetheless, it is hard to control due to the temperature variation. This paper proposed a DC electronic load using the boost converter. The proposed electronic load operates in the continuous current mode and control using the integral controller. The electronic load using the boost converter is compared with the electronic load using the linear regulator. The results show that the boost converter able to operate as an electronic load with an error lower than 0.5% and response time lower than 13 ms.
Comparison of control strategies for thermoelectric generator emulator Ayop, Razman; Tan, Chee Wei; Ayob, Shahrin Md; Daud, Mohd Zaki; Jamian, Jasrul Jamani; Nordin, Norjulia Mohamad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 14, No 4: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v14.i4.pp2094-2106

Abstract

Thermoelectric generator (TEG) can directly convert heat energy into electrical energy. It improves the power efficiency of the energy generation system by converting the power loss in the form of heat produced during the generation process into additional electrical energy. The TEG emulator (TEGE) is a power converter that produces a similar current-voltage characteristic as the TEG. It is a valuable device used to develop and test the TEG-based energy generation system. Nonetheless, the research on the TEGE is still in the early stage. This paper proposed a proper, low-cost, and high-efficient TEGE design using the buck converter. The contribution of the paper covers the TEG model in the form of an array, the buck converter design tailored to the TEGE, and 4 new control strategies proposed for the TEGE. The control strategies are the direct referencing method (DRM), perturb and observed (PnO) method, resistance comparison method (RCM), and resistance feedback method (RFM). The conventional proportional-integral controller is used to maintain a smooth operation during transient and steady-state periods. The results show the merits or demerits for each proposed control strategy based on the accuracy, transient response, stability, overshoot, and efficiency.
Modular multi-input converter design for hybrid energy storage system used in traction power substation Toh, Chuen Ling; Tan, Ching Sin; Tan, Chee Wei
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i1.pp369-379

Abstract

Hybrid energy storage system (HESS) which consists of battery and supercapacitor is proposed to store bulk regenerative braking energy for future traction power substation. This system aims to optimize energy utilization and enhance the sustainability of rail transport. To facilitate bidirectional power flow between the traction network and the HESS, this paper introduces a modular multi-input converter (MMIC) to dynamically transfers during both braking and acceleration phases of train operation. The proposed MMIC operates in multiple modes, allowing for seamless energy exchange between the battery and supercapacitor, thus minimizing the depth of discharge of the battery and extending its lifespan. A comprehensive theoretical analysis of the MMIC is presented, detailing its four distinct operating modes. Additionally, simulation model of a 1.5 kV traction power substation with 500 kWh HESS is developed to validate the performance of the MMIC during steady-state operation. The findings demonstrate significant improvements in energy recovery and storage capabilities, underscoring the potential of the HESS to support future traction power substations in achieving higher efficiency and sustainability.
A review of the state of art and prospects in energy storage systems for energy harvesting applications Sutikno, Tole; Arsadiando, Watra; Tan, Chee Wei; Facta, Mochammad
International Journal of Advances in Applied Sciences Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijaas.v13.i2.pp447-458

Abstract

Due to the increasing trend in worldwide energy consumption, many new energy technology systems have emerged in the past decades. The implementation of energy storage system (ESS) technology in energy harvesting systems is significant to achieve flexibility and reliability in fulfilling the load demands. In this paper, several types of energy storage technologies available in the market are discussed to view their benefits and drawbacks. The main aim of this review is to provide a platform for readers especially those who seek to know more about ESS at a glance, to decide which ESS technology is best suited for any specific applications. This review would serve as a base for the initial state to make the right decision by referring to the criterias and characteristics of energy resources to get the optimal ESS technology. A comprehensive comparison among the various types of ESS technologies is outlined and elaborated to provide a better and clearer picture to the readers. Last but not least, the relevant recommendations and alternative choices for services related to the harvesting of solar PV energy are described too. It is hoped that the findings of this review article may be helpful to all readers interested in ESS technology.