Claim Missing Document
Check
Articles

Found 4 Documents
Search

Experimental study on modified GOA-MPPT for PV system under mismatch conditions Muhammad, Nur Afida; Tajuddin, Mohammad Faridun Naim; Azmi, Azralmukmin; Jamaludin, Mohd Nasrul Izzani; Ayob, Shahrin Md; Sutikno, Tole
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i1.pp611-622

Abstract

This paper presents a modified grasshopper optimization algorithm (GOA) tailored for optimizing the power extraction capability of a solar photovoltaic (PV) system. The algorithm`s focus is on addressing one of the issues associated with mismatch loss (MML), particularly the mismatch (MM) in solar irradiance conditions, to attain maximum output power. The core strategy of the GOA involves optimizing the duty cycles of the converter to achieve the maximum power point (MPP) for the PV system. The PV system configuration comprises three PV modules connected in series and a SEPIC converter. To facilitate efficient maximum power point tracking (MPPT), the paper proposes using the GOA as a controlling mechanism. The study employs a comparative approach, contrasting the performance of the proposed system against established algorithms, such as PSO and GWO. The results of these evaluations exhibit the superior performance of the proposed GOA when compared to other optimization techniques. The GOA exhibits exceptional MPPT tracking characteristics, characterized by rapid tracking speed, heightened efficiency, and minimal oscillations within the PV system. Consequently, the GOA effectively addresses one of the MML issues.
Comparison of control strategies for thermoelectric generator emulator Ayop, Razman; Tan, Chee Wei; Ayob, Shahrin Md; Daud, Mohd Zaki; Jamian, Jasrul Jamani; Nordin, Norjulia Mohamad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 14, No 4: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v14.i4.pp2094-2106

Abstract

Thermoelectric generator (TEG) can directly convert heat energy into electrical energy. It improves the power efficiency of the energy generation system by converting the power loss in the form of heat produced during the generation process into additional electrical energy. The TEG emulator (TEGE) is a power converter that produces a similar current-voltage characteristic as the TEG. It is a valuable device used to develop and test the TEG-based energy generation system. Nonetheless, the research on the TEGE is still in the early stage. This paper proposed a proper, low-cost, and high-efficient TEGE design using the buck converter. The contribution of the paper covers the TEG model in the form of an array, the buck converter design tailored to the TEGE, and 4 new control strategies proposed for the TEGE. The control strategies are the direct referencing method (DRM), perturb and observed (PnO) method, resistance comparison method (RCM), and resistance feedback method (RFM). The conventional proportional-integral controller is used to maintain a smooth operation during transient and steady-state periods. The results show the merits or demerits for each proposed control strategy based on the accuracy, transient response, stability, overshoot, and efficiency.
Optimizing battery energy storage sizing in microgrids using manta ray foraging optimization algorithm Yatim, Yazhar; Tajuddin, Mohammad Faridun Naim; Sulaiman, Shahril Irwan; Azmi, Azralmukmin; Ayob, Shahrin Md; Sutikno, Tole
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i4.pp2535-2544

Abstract

The integration of renewable energy sources (RES) into microgrids (MGs) is becoming increasingly important as the world strives to transition towards more sustainable and eco-friendly energy systems. Unfortunately, integrating RES such as solar and wind power into MGs poses challenges due to their intermittent nature. The batteries need to be integrated into the MG system to overcome these challenges and ensure a stable and reliable power supply. However, the size of the battery presents another challenge as it affects the total operation cost of the MG system. Manta ray foraging optimization (MRFO) is used as an optimization technique to minimize the total operation cost of the MG system while ensuring optimum battery capacity. This algorithm is compared with the particle swarm optimization (PSO), differential evolution (DE), and the sine cosine algorithm (SCA). As a result, the proposed technique achieved a better solution than the existing algorithms.
Single-stage transformer less multilevel boost inverter with zero leakage current for PV system Al-Mamoori, Dalya Hamzah; Ayob, Shahrin Md; Arif, M. Saad Bin
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i1.pp673-682

Abstract

Transformer less inverters (TIs) are highly efficient and have a high power density, making them a popular choice for grid-connected solar PV applications. However, certain topologies can lead to high-frequency common-mode voltage (CMV), which can cause issues such as high leakage current, electromagnetic interference, and an absence of safety. Our newly developed inverter is designed to be more efficient, cost-effective, and compact than traditional types while also addressing the issue of leakage current. This architecture eliminates leakage current by directly connecting the grid's neutral terminal to the PV's negative polarity, resulting in a low leakage current. Moreover, the inverter increases output voltage using only one voltage source and a few power devices, making it a cost-effective solution. Its modular form allows for an increase in output levels, further enhancing its cost-effectiveness. We conducted a comprehensive mathematical examination, and the MATLAB/Simulink results demonstrate its ability to increase the output voltage, eliminate leakage current, and maintain acceptable output voltage THD and current waveforms. These results and the inverter's safety features showcase significant improvements over traditional inverters and provide a secure and reliable solution for grid-connected solar PV applications.