Claim Missing Document
Check
Articles

Found 23 Documents
Search

PERANCANGAN SISTEM INFORMASI PENGGAJIAN PADA PT. ABC Syaifudin, Anas; Risqiati, Risqiati; Sugianti, Devi
IC Tech: Majalah Ilmiah Vol 19 No 2 (2024): IC Tech: Majalah Ilmiah Volume XIX No. 2 Oktober 2024
Publisher : P3M Institut Widya Pratama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47775/ictech.v19i2.308

Abstract

Penelitian ini berfokus pada perancangan dan implementasi sistem informasi penggajian berbasis web di PT. ABC, sebuah perusahaan garmen dengan lebih dari 500 karyawan. Sistem yang dikembangkan bertujuan untuk menggantikan metode manual berbasis Microsoft Excel yang sebelumnya digunakan untuk mengelola penggajian, yang sering kali menyebabkan keterlambatan proses dan kesalahan perhitungan. Sistem baru ini dibangun menggunakan framework Laravel dan basis data MySQL, serta dirancang untuk mengotomatisasi berbagai proses, termasuk pengelolaan data karyawan, penghitungan gaji, lembur, dan pencatatan izin serta cuti. Selain itu, fitur slip gaji digital memudahkan karyawan untuk mengakses informasi gaji mereka secara transparan. Pengujian fungsional dan User Acceptance Test (UAT) dilakukan dengan melibatkan karyawan dan tim HRD melalui kuesioner. Hasil UAT menunjukkan bahwa 90% responden memberikan tanggapan positif terhadap sistem, terutama terkait dengan fitur transparansi gaji dan akses slip gaji digital. Penggunaan kuesioner ini memungkinkan evaluasi yang lebih menyeluruh tentang kepuasan pengguna, memastikan bahwa sistem memenuhi kebutuhan operasional perusahaan dan meningkatkan efisiensi kerja. Peluncuran sistem ini diharapkan dapat memperbaiki proses penggajian, mengurangi kesalahan perhitungan, dan meningkatkan kepuasan karyawan terhadap manajemen gaji perusahaan. Kata kunci: Sistem Informasi Penggajian, Efisiensi Penggajian, Gaji Karyawan.
Business Intellegenge untuk Perencanaan Strategi Pemasaran pada UMKM Sarung dengan Manajemen Dashboard Setianto, Wahyu; Sugianti, Devi; Wibowo, Ari Putra; Risqiati, Risqiati; Darmawan, Arief Soma
METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Vol. 9 No. 2 (2025): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

MSMEs are the backbone of the national economy, the government is trying to recover the economy after the Covid-19 pandemic by making a new breakthrough with digitalization. Digitalization helps MSMEs to process and analyze data for decision making. The data stored in the company is increasing, so it requires Business Intelligence to make it easier for companies to present information. MSME Abitex experienced problems in planning sales strategies by looking at interest in each city. The stages of research carried out were problem identification, data collection, design, manufacture, testing results. In identifying problems, problems were found in monitoring sales to create sales strategies, in data collection from 2021 to 2023. The number of transactions was 807 sales with 3 types of sarongs, a total of 14 sarongs produced. In designing using a star schema obtained from the sales fact table, time dim, customer dim, goods dim. Business intelligence can display data visualization by grouping by product, customer and by time, and can see interest in products in each city
IMPROVING INDONESIAN SPEECH EMOTION CLASSIFICATION USING MFCC AND BILSTM WITH AUDIO AUGMENTATION Septiyanto, Muhammad; Susanto, Eko Budi; Sugianti, Devi
JIKO (Jurnal Informatika dan Komputer) Vol 8, No 3 (2025)
Publisher : Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/jiko.v8i3.10820

Abstract

Emotion classification from speech has become an important technology in the modern artificial intelligence era. However, research for the Indonesian language is still limited, with existing methods predominantly relying on conventional machine learning approaches that achieve a maximum accuracy of only 90%. These traditional methods face challenges in capturing complex temporal dependencies and bidirectional contextual patterns inherent in emotional speech, particularly for Indonesian prosodic characteristics. To address this limitation, this study uses a combination of Mel-Frequency Cepstral Coefficients (MFCC) feature extraction and Bidirectional Long Short-Term Memory (BiLSTM) model with audio augmentation techniques for Indonesian speech emotion classification. The IndoWaveSentiment dataset contains 300 audio recordings from 10 respondents with five emotion classes: neutral, happy, surprised, disgusted, and disappointed. Audio augmentation techniques with a 2:1 ratio using five methods generated 900 samples. MFCC feature extraction produced 40 coefficients that were processed using BiLSTM architecture with two bidirectional layers (256 and 128 units). The model was trained using Adam optimizer with early stopping. Research results show the highest accuracy of 93.33% with precision of 93.7%, recall of 93.3%, and F1-score of 93.3%. The "surprised" emotion achieved perfect performance (100%), while "happy" had the lowest accuracy (88.89%). This result surpasses previous benchmarks on the same dataset, which utilized Random Forest (90%) and Gradient Boosting (85%). This study demonstrates the effectiveness of combining MFCC, BiLSTM, and audio augmentation in capturing Indonesian speech emotion characteristics for the development of voice-based emotion recognition systems.