Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)

LRDDoS Attack Detection on SD-IoT Using Random Forest with Logistic Regression Coefficient Wahyuli Dwiki Nanda; Fauzi Dwi Setiawan Sumadi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 2 (2022): April 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (294.994 KB) | DOI: 10.29207/resti.v6i2.3878

Abstract

Software-Defined Internet of Things (SD-IoT) is currently developed extensively. The Software-Defined Network (SDN) architecture allows Internet of Things (IoT) networks to separate control and data delivery areas into different abstraction layers. However, Low-Rate Distributed Denial of Service (LRDDoS) attacks are a significant problem in SD-IoT networks because they can overwhelm centralized control systems or controllers. Therefore, a system is needed to identify and detect these attacks comprehensively. This paper built an LRDDoS detection system using the Random Forest (RF) algorithm as the classification method. The dataset used during the experiment was considered a new dataset schema with 21 features. The dataset was selected using feature importance - logistic regression to increase the classification accuracy results and reduce the computational burden of the controller during the attack prediction process. The results of the RF classification with the LRDDoS packet delivery speed of 200 packets per second (PPS) had the highest accuracy of 98.7%. The greater the delivery rates of the attack pattern, the increased accuracy results.
Increased Accuracy on Image Classification of Game Rock Paper Scissors using CNN Muhammad Nur Ichsan; Nur Armita; Agus Eko Minarno; Fauzi Dwi Setiawan Sumadi; Hariyady
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 4 (2022): Agustus 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (327.162 KB) | DOI: 10.29207/resti.v6i4.4222

Abstract

Rock Paper Scissors is one of the most popular games in the world, because of their easy and simple way to play among young and elderly people. The point of this game is to do the draw or just to find out who loses or wins. The pandemic conditions made people unable to meet face-to-face and could only play this game virtually. To carry out this activity in a virtual way, this research facilitates a model in the form of image classification to distinguish the hand gestures s in the form of rock, paper, and scissors. This classification process utilizes the Convolutional Neural Network (CNN) method. This method is one type of artificial neural network in terms of image classification. CNN uses three stages, namely convolutional layer, pooling layer, and fully connected layer. The implementation of this method for hand gesture classification in the form of rock, scissors, and paper images in this study shows an increased average accuracy towards the previous study from 97.66% to 99%.