Claim Missing Document
Check
Articles

Found 7 Documents
Search

Analysis Of E-Commerce Product With Web Scraping Technique Maulidiyah, Siti jahro; Syahyadi, Asep Indra
CoreID Journal Vol. 3 No. 1 (2025): March 2025
Publisher : CV. Generasi Intelektual Digital

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60005/coreid.v3i1.90

Abstract

This research aims to implement a web scraping system to automatically extract product data from the e-commerce platform Bukalapak, with the goal of supporting statistical analysis at the Central Bureau Statistics (BPS) of West Java Province. The system utilizes a combination of API access and automation tools such as python, executed in the Google Colab cloud environment. Through this method, 74,796 product records were successfully collected, encompassing information such as product names, prices, categories, customer reviews, stock levels, and seller locations. The data was then processed and visualized using bar charts and histograms to analyze market trends, price distribution, and consumer behavior across regions in West Java. The results show that most products fall within affordable ranges, with certain categories like electronics and personal care dominating in volume. The scraping approach proved to be an efficient and scalable solution for acquiring real-time market data, supporting BPS in evidence-based decision-making and policy formulation.
SISTEM PAKAR PENDETEKSI PENYAKIT PADA BALITA MENGGUNAKAN METODE COSINE SIMILARITY DAN ALGORTIMA NAZIEF ADRIANI RIDWANG, RIDWANG; AFIF, NUR; SYAHYADI, ASEP INDRA
Jurnal INSTEK (Informatika Sains dan Teknologi) Vol 5 No 1 (2020): APRIL
Publisher : Department of Informatics Engineering, Faculty of Science and Technology, Universitas Islam Negeri Alauddin, Makassar, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5407.224 KB) | DOI: 10.24252/instek.v5i1.13298

Abstract

Kesehatan merupakan prioritas utama bagi umat manusia. Sebagian dari para orang tua banyak yang salah dalam menyikapi gejala – gejala penyakit yang timbul pada balita dan sering melakukan pengobatan sendiri tanpa adanya bimbingan dari dokter atau pakar sehingga bisa berakibat fatal pada pertolongan pertama kepada balita. Penelitian ini bertujuan untuk memberikan petunjuk kepada orang tua dalam melakukan pertolongan pertama pada balita. Aplikasi di rancang dengan menggunakan metode Cosine Similarity dan Algoritma Nazief & Adriani untuk melakukan klasifikasi text sehingga didapatkan jenis penyakit dan cara pencegahannya berdasarkan gejala – gejala yang di masukkan oleh orang tua atau keluarga pasien dalam bentuk kalimat.Kata Kunci : Sistem Pakar, penyakit balita, Cosine Similarity, Nazief & Adriani
IMPLEMENTASI IOT PADA LAMPU JALAN BERBASIS PANEL SURYA DI WILAYAH UNIVERSITAS MUHAMMADIYAH MAKASSAR MUNIARDI, MUNIARDI; RIDWANG, RIDWANG; RAHMANIAH, RAHMANIAH; ANAS, LUKMAN; SYAHYADI, ASEP INDRA
Jurnal INSTEK (Informatika Sains dan Teknologi) Vol 6 No 2 (2021): OCTOBER
Publisher : Department of Informatics Engineering, Faculty of Science and Technology, Universitas Islam Negeri Alauddin, Makassar, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/instek.v6i2.25432

Abstract

 Energi listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini terutama di kampus – kampus besar seperti Universitas Muhammadiyah Makassar. Salah satu sumber pengeluaran terbesar Universitas setiap bulan berada di sektor energi yaitu penggunaan listrik. Untuk mengurangi pengeluaran dari energi listrik maka pihak Universitas melakukan penghematan dari penggunaan lampu dan Air Conditioner yang tidak penting. Untuk mengatasi masalah tersebut adalah penerapan sumber energi cahaya matahari sebagai sumber energi untuk lampu jalan dan alat elektronik yang lain sehingga tidak membenani pada pembiayaan Universitas setiap bulan. Penggunaan Solar Cell dapat menghasilkan energi listrik dalam jumlah yang tidak terbatas langsung diambil dari matahari dan tidak memerlukan bahan bakar serta bersifat ramah lingkungan. Output penelitia berupa lampu jalan panel surya. Kata Kunci : Energi Listrik, Solar Cell, Lampu Jalan, Universitas Muhammadiyah 
PENGEMBANGAN SISTEM INFORMASI DATABASE PENELITIAN DAN PENGABDIAN MASYARAKAT TERINTEGRASI PADA UIN ALAUDDIN MAKASSAR Rahman, Faisal; Masyhur, Zulkarnaim; Syahyadi, Asep Indra
Jurnal INSTEK (Informatika Sains dan Teknologi) Vol 10 No 1 (2025): APRIL
Publisher : Department of Informatics Engineering, Faculty of Science and Technology, Universitas Islam Negeri Alauddin, Makassar, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/instek.v10i1.56865

Abstract

Pengelolaan data penelitian, pengabdian masyarakat, dan kekayaan intelektual di UIN Alauddin Makassar saat ini belum optimal, mengakibatkan pendokumentasian yang tidak komprehensif dan ketidakefisienan dalam akses data. Kondisi ini memaksa Lembaga Penelitian dan Pengabdian Masyarakat (LP2M) bergantung pada proses manual seperti pencarian arsip fisik atau permintaan berulang ke unit kerja/peneliti, yang berisiko terhadap kehilangan data. Untuk mengatasi masalah ini, penelitian ini bertujuan mengembangkan sistem informasi terintegrasi berbasis web untuk pendataan dan pengelolaan kegiatan penelitian serta pengabdian masyarakat. Mengadopsi pendekatan Research and Development (R&D) dengan metode System Development Life Cycle (SDLC), pengembangan sistem melalui tahapan perencanaan, analisis kebutuhan, desain, implementasi, pengujian, dan pemeliharaan. Hasil penelitian berupa sistem bernama SITASYA yang berhasil diimplementasikan. Pengujian fungsional menunjukkan sistem beroperasi dengan baik, memfasilitasi pencarian dan pemantauan data penelitian berdasarkan fakultas atau program studi serta memungkinkan administrator melakukan input data secara mandiri.
Student Attendance Information System at SMKN with Web-Based QR Code Rojari, Fatima; Kelen, Yoseph Pius Kurniawan; Syarifuddin, Risald; Fallo, Kristoforus; Syahyadi, Asep Indra
JESII: Journal of Elektronik Sistem InformasI Vol 3 No 1 (2025): JOURNAL ELEKTRONIK SISTEM INFORMASI (JUNE)
Publisher : Departement Information Systems Universitas Kebangsaan Republik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31848/jesii.v3i1.4034

Abstract

SMKN Kakuluk Mesak is a vocational high school located in Dua Laus Village, Kakuluk Mesak District, Belu Regency, East Nusa Tenggara Province, which prepares students to work in specific fields. Students can continue their education at SMK after completing their education at the junior high school level. The study period for SMK students is carried out for three to four years of learning, which is divided into three years of study at school and one year in the related industry department. SMKN Kakuluk Mesak has five majors: APAT, NKPI, WBE, TKPI, and APHPI. One of the problems at SMKN Kakuluk Mesak in terms of technology is the manual attendance and grading of students. Attendance and grades are recorded using books. Therefore, a web-based student attendance information system with QR code is needed to facilitate the student attendance process. This system is built using the waterfall method, which is a systematic and directed approach to developing software in which it is used step by step until it runs in order. This research resulted in a website-based student attendance information system with QR code that helps the school manage attendance data and students can view grades and attendance records anytime and anywhere. Keywords: Website; QR Code; Attendance; Waterfall
Detecting signal transtition in dynamic sign language using R-GB LSTM method Ridwang, Ridwang; Adriani, Adriani; rahmania, Rahmania; Sahrim, Mus’ab; Syahyadi, Asep Indra; Setiaji, Haris
International Journal of Advances in Intelligent Informatics Vol 10, No 2 (2024): May 2024
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v10i2.1445

Abstract

Sign Language Recognition (SLR) helps deaf people communicate with normal people. However, SLR still has difficulty detecting dynamic movements of connected sign language, which reduces the accuracy of detection. This results from a sentence's usage of transitional gestures between words. Several researchers have tried to solve the problem of transition gestures in dynamic sign language, but none have been able to produce an accurate solution. The R-GB LSTM method detects transition gestures within a sentence based on labelled words and transition gestures stored in a model. If a gesture to be processed during training matches a transition gesture stored in the pre-training process and its probability value is greater than 0.5, it is categorized as a transition gesture. Subsequently, the detected gestures are eliminated according to the gesture's time value (t). To evaluate the effectiveness of the proposed method, we conducted an experiment using 20 words in Indonesian Sign Language (SIBI). Twenty representative words were selected for modelling using our R-GB LSTM technique. The results are promising, with an average accuracy of 80% for gesture sentences and an even more impressive accuracy rate of 88.57% for gesture words. We used a confusion matrix to calculate accuracy, specificity, and sensitivity. This study marks a significant leap forward in developing sustainable sign language recognition systems with improved accuracy and practicality. This advancement holds great promise for enhancing communication and accessibility for deaf and hard-of-hearing communities.
Smart Verification of High School Student Reports Using Optical Character Recognition and BERT Models Syahyadi, Asep Indra; Afif, Nur; Yusuf, Ahmad; Setiaji, Haris; Ridwang, Ridwang; Irfan, Mohammad
ILKOM Jurnal Ilmiah Vol 17, No 3 (2025)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v17i3.2764.252-261

Abstract

This study proposes an intelligent framework for verifying high school report cards with diverse layouts by integrating Optical Character Recognition (OCR) and a fine-tuned BERT model. While previous works primarily address document formats with uniform structures, this research specifically tackles the heterogeneity of report cards that differ in subject arrangement, naming conventions, and grade presentation across schools. The system was trained and evaluated using 1,000 Indonesian high school report card pages encompassing 20 subjects, both core (e.g., Mathematics, Indonesian History, Religious Education) and non-core (e.g., Arts and Culture, Physical Education). OCR was employed to extract textual content from scanned or image-based report cards, while BERT handled contextual mapping between subjects and corresponding grades. The dataset was divided into 80% for training and 20% for validation, and the model was fine-tuned on the IndoBERT-base architecture. Experimental results showed that the proposed OCR–BERT pipeline achieved an average accuracy of 97.7%, with per-subject accuracies ranging from 96% to 99%. The model exhibited high robustness in handling inconsistent layouts and minimizing deviations between actual and detected grades. Comparative analysis indicated that this hybrid approach outperforms traditional OCR-only or CNN-based methods, which are typically constrained by fixed template assumptions and lack contextual understanding. The proposed system demonstrates practical relevance for large-scale admission platforms such as SPAN-PTKIN, where manual verification of thousands of report cards is laborious and error-prone. By automating the verification process, the framework reduces human workload, enhances accuracy, and supports fairer, data-driven admission decisions. Future research will explore multimodal integration of textual and visual features, expansion to broader datasets, and application to other academic documents such as transcripts and diplomas. Overall, this work contributes a scalable, accurate, and context-aware solution for educational data verification in heterogeneous document environments.