Claim Missing Document
Check
Articles

Found 2 Documents
Search

Experimental study on modified GOA-MPPT for PV system under mismatch conditions Muhammad, Nur Afida; Tajuddin, Mohammad Faridun Naim; Azmi, Azralmukmin; Jamaludin, Mohd Nasrul Izzani; Ayob, Shahrin Md; Sutikno, Tole
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i1.pp611-622

Abstract

This paper presents a modified grasshopper optimization algorithm (GOA) tailored for optimizing the power extraction capability of a solar photovoltaic (PV) system. The algorithm`s focus is on addressing one of the issues associated with mismatch loss (MML), particularly the mismatch (MM) in solar irradiance conditions, to attain maximum output power. The core strategy of the GOA involves optimizing the duty cycles of the converter to achieve the maximum power point (MPP) for the PV system. The PV system configuration comprises three PV modules connected in series and a SEPIC converter. To facilitate efficient maximum power point tracking (MPPT), the paper proposes using the GOA as a controlling mechanism. The study employs a comparative approach, contrasting the performance of the proposed system against established algorithms, such as PSO and GWO. The results of these evaluations exhibit the superior performance of the proposed GOA when compared to other optimization techniques. The GOA exhibits exceptional MPPT tracking characteristics, characterized by rapid tracking speed, heightened efficiency, and minimal oscillations within the PV system. Consequently, the GOA effectively addresses one of the MML issues.
Optimizing battery energy storage sizing in microgrids using manta ray foraging optimization algorithm Yatim, Yazhar; Tajuddin, Mohammad Faridun Naim; Sulaiman, Shahril Irwan; Azmi, Azralmukmin; Ayob, Shahrin Md; Sutikno, Tole
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i4.pp2535-2544

Abstract

The integration of renewable energy sources (RES) into microgrids (MGs) is becoming increasingly important as the world strives to transition towards more sustainable and eco-friendly energy systems. Unfortunately, integrating RES such as solar and wind power into MGs poses challenges due to their intermittent nature. The batteries need to be integrated into the MG system to overcome these challenges and ensure a stable and reliable power supply. However, the size of the battery presents another challenge as it affects the total operation cost of the MG system. Manta ray foraging optimization (MRFO) is used as an optimization technique to minimize the total operation cost of the MG system while ensuring optimum battery capacity. This algorithm is compared with the particle swarm optimization (PSO), differential evolution (DE), and the sine cosine algorithm (SCA). As a result, the proposed technique achieved a better solution than the existing algorithms.