M, Muhardi
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Algoritma Support Vector Machine (SVM) pada Pengklasifikasian Sentimen Warganet terhadap Juru Parkir Liar Patasik, Madyana; S, Santi; M, Muhardi; R, Thabrani; T, Husain
Buletin Sistem Informasi dan Teknologi Islam (BUSITI) Vol 6, No 3 (2025)
Publisher : Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/busiti.v6i3.3080

Abstract

Juru parkir liar dapat dengan mudah ditemukan di Kota Makassar dan keberadaannya ini sering meresahkan warga. Oleh karena itu, penelitian ini bertujuan untuk mengklasifikasikan sentimen negatif warganet terhadap juru parkir liar tersebut. Dengan menggunakan algoritma Support Vector Machine (SVM), dari 200 data yang dikumpulkan melalui kuesioner daring, 80% (160 responden) digunakan untuk data latih dan 20% (40 responden) untuk data uji. Hasil menunjukkan bahwa model SVM berhasil mengklasifikasikan sentimen, negatif (70% atau 28 responden) dan tidak negatif (30% atau 12 responden) dari 40 data uji dengan tingkat akurasi sebesar 95%, precision  1.00, recall 1.00, dan F1-score 1.00 untuk kelas/label “positif” (sentimen negatif), precision  0.83, recall 0.83, dan F1-score 0.91 untuk kelas/label “negatif” (sentimen tidak negatif). Dengan demikian, dapat disimpulkan bahwa penelitian ini membuktikan efektivitas algoritma SVM dalam mengklasifikasikan sentimen terhadap juru parkir liar. Hasil yang diperoleh dapat menjadi bahan pertimbangan pihak berwenang dalam menertibkan kota, terutama area sekitar pertokoan atau pusat perbelanjaan.