Claim Missing Document
Check
Articles

Found 2 Documents
Search

Thermodynamic Study of Palm Kernel Shell Gasification for Aggregate Heating in an Asphalt Mixing Plant Putro, Firman Asto; Pranolo, Sunu Herwi; Waluyo, Joko; Setyawan, Ary
International Journal of Renewable Energy Development Vol 9, No 2 (2020): July 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.2.311-317

Abstract

This study evaluated thermodynamically the performance of conversion of palm kernel shells into combustible gas through gasification technology for aggregate heating in a hot-mixed asphalt production plant by developing a thermodynamic model using licensed Aspen Plus v.11 software. The effects of the equivalence ratio (ER) in the gasification process and the amount of combustion air to combustible gas to attain the required aggregate temperature were investigated. The thermodynamic model showed a good agreement with the experimental results based H2 and CO contain in producer gas which provided by maximum root mean square errors value of 8.82 and 6.42 respectively. Gasification of 30–35 kg of palm kernel shells in a fixed-bed gasifier reactor using air as a gasifying agent at an ER of 0.325–0.350 generated gaseous fuel for heating 1 ton of aggregate to a temperature of 180–200°C with combustion excess air 10%–20%. 
Tar Removal of Palm Kernel Shell Syngas using Wet Scrubber Putro, Firman Asto; Pranolo, Sunu Herwi; Waluyo, Joko; Basworo, Agung Tri; Norman, Hafiz; Kristiani, Anis; Hidayati, Luthfiana Nurul
Jurnal Rekayasa Kimia & Lingkungan Vol 19, No 1 (2024): Jurnal Rekayasa Kimia & Lingkungan (June 2024 )
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23955/rkl.v19i1.33341

Abstract

In the current situation, biomass gasification has become a major interest in producing clean energy and green chemicals. By gasification, the biomass can be converted to synthetic gas (syngas) for many purposes. However, syngas with high tar content can cause pipeline fouling and disturb the operation of downstream equipment. To reduce tar content, a two-series wet scrubber was installed for syngas cleaning produced by palm kernel shell gasification. Firstly, the gasification is operated at a temperature range of 500 600oC and 700 800oC to determine the conditions where the lowest tar syngas is produced. After that, the wet scrubber is installed with a variety of solvents including isopropyl alcohol, water, used cooking oil, and used lubricating oil. The results show that the lowest tar syngas was produced at a temperature of 800oC with a tar yield of 0.165 g/kg biomass. Meanwhile, in the same condition, isopropyl alcohol delivers the most substantial impact on tar removal efficiency, whereas used lubricating oil results in less impact. The use of isopropyl alcohol resulted in 99.25% tar removal effectiveness while lubricating oil yielded just 50.32%.