Claim Missing Document
Check
Articles

Found 4 Documents
Search

Recent advances in passive cooling methods for photovoltaic performance enhancement Ahmad, Emy Zairah; Sopian, Kamaruzzaman; Jarimi, Hasila; Fazlizan, Ahmad; Elbreki, Abdelnaser; Abd Hamid, Ag Sufiyan; Rostami, Shirin; Ibrahim, Adnan
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 1: February 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i1.pp146-154

Abstract

The electrical output performance of photovoltaic (PV) modules are sensitive to temperature variations and the intensity of solar irradiance under prolonged exposure. Only 20% of solar irradiance is converted into useful electricity, and the remaining are dissipated as heat which in turns increases the module operating temperature. The increase in module operating temperature has an adverse impact on the open-circuit voltage (Voc), which results in the power conversion efficiency reduction and irreversible cell degradation rate. Hence, proper cooling methods are essential to maintain the module operating temperature within the standard test conditions (STC). This paper presents an overview of passive cooling methods for its feasibility and economic viability in comparison with active cooling. Three different passive cooling approaches are considered, namely phase change material (PCM), fin heat sink, and radiative cooling covering the discussions on the achieved cooling efficiency. The understanding of the above-mentioned state-of-the-art cooling technologies is vital for further modifications of existing PV modules to improve the efficiency of electrical output.
Artificial Neural Network Prediction Model of Dust Effect on Photovoltaic Performance for Residential applications: Malaysia Case Study Ahmad, Emy Zairah; Jarimi, Hasila; Razak, Tajul Rosli
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.42195

Abstract

Dust accumulation on the photovoltaic system adversely degrades its power conversion efficiency (PCE). Focusing on residential installations, dust accumulation on PV modules installed in tropical regions may be vulnerable due to lower inclination angles and rainfall that encourage dust settlement on PV surfaces. However, most related studies in the tropics are concerned with studies in the laboratory, where dust collection is not from the actual field, and an accurate performance prediction model is impossible to obtain. This paper investigates the dust-related degradation in the PV output performance based on the developed Artificial Neural Network (ANN) predictive model. For this purpose, two identical monocrystalline modules of 120 Wp were tested and assessed under real operating conditions in Melaka, Malaysia (2.1896° N, 102.2501° E), of which one module was dust-free (clean). At the same time, the other was left uncleaned (dusty) for one month. The experimental datasets were divided into three sets: the first set was used for training and testing purposes, while the second and third, namely Data 2 and Data 3, were used for validating the proposed ANN model. The accuracy study shows that the predicted data using the ANN model and the experimentally acquired data are in good agreement, with MAE and RMSE for the cleaned PV module are as low as 1.28 °C, and 1.96 °C respectively for Data 2 and 3.93 °C and 4.92 °C respectively for Data 3.  Meanwhile, the RMSE and MAE for the dusty PV module are 1.53°C and 2.82 °C respectively for Data 2 and 4.13 °C and 5.26 °C for Data 3. The ANN predictive model was then used for yield forecasting in a residential installation and found that the clean PV system provides a 7.29 % higher yield than a dusty system. The proposed ANN model is beneficial for PV system installers to assess and anticipate the impacts of dust on the PV installation in cities with similar climatic conditions.
Recent advances in passive cooling methods for photovoltaic performance enhancement Ahmad, Emy Zairah; Sopian, Kamaruzzaman; Jarimi, Hasila; Fazlizan, Ahmad; Elbreki, Abdelnaser; Abd Hamid, Ag Sufiyan; Rostami, Shirin; Ibrahim, Adnan
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 1: February 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i1.pp146-154

Abstract

The electrical output performance of photovoltaic (PV) modules are sensitive to temperature variations and the intensity of solar irradiance under prolonged exposure. Only 20% of solar irradiance is converted into useful electricity, and the remaining are dissipated as heat which in turns increases the module operating temperature. The increase in module operating temperature has an adverse impact on the open-circuit voltage (Voc), which results in the power conversion efficiency reduction and irreversible cell degradation rate. Hence, proper cooling methods are essential to maintain the module operating temperature within the standard test conditions (STC). This paper presents an overview of passive cooling methods for its feasibility and economic viability in comparison with active cooling. Three different passive cooling approaches are considered, namely phase change material (PCM), fin heat sink, and radiative cooling covering the discussions on the achieved cooling efficiency. The understanding of the above-mentioned state-of-the-art cooling technologies is vital for further modifications of existing PV modules to improve the efficiency of electrical output.
Design strategies for solar photovoltaic integration in rural areas Saadon, Intan Mastura; Ahmad, Emy Zairah; Norddin, Nurbahirah; Idris, Norain
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i4.pp3603-3612

Abstract

This study explores the optimization of photovoltaic (PV) systems in the Sungai Tiang Camp region, Malaysia, with a focus on determining the ideal tilt angles to maximize energy generation in a tropical environment while incorporating a cost analysis. While existing studies optimize tilt angles for energy maximization in temperate regions, this study addresses the unique climatic and socio-economic conditions of rural Malaysia. Unlike fixed-tilt assumptions common in prior work, this research explores cost-effective, manually adjustable systems tailored for local weather patterns and rural affordability. To address this, the study examines the relationship between tilt angle, solar irradiance, temperature and output power. The results are analyzed to identify optimal configurations. Results reveal that tilt angles between 5° and 10° deliver the highest energy output, with slight seasonal adjustments for efficiency improvement. These findings align with Malaysia's tropical solar profile, offering practical insights for micro-scale solar deployments in similar climates. By addressing the unique needs of remote areas, this research contributes to bridging the gap in localized PV studies. Its outcomes not only enhance the understanding of solar PV performance in tropical conditions but also provide valuable guidelines for rural electrification and sustainable energy solutions in equatorial regions worldwide.