Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Computer Science Research

Analisis Kinerja Random Forest Dalam Deteksi Gejala Alergi Rongga Mulut Berbasis Warna Gusi Gea, Juli Hartati; Agustinus Rudatyo Himamunanto; Haeny Budiati
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.657

Abstract

Early detection of allergies in the oral cavity remains challenging due to the subjective nature of visual assessment and limited access to diagnostic facilities. This study proposes a novel approach using the Random Forest algorithm to classify the severity of allergic symptoms based on gum color analysis from digital images. A total of 2,742 gum images were clinically categorized using the Modified Gingival Index (MGI) into mild, moderate, and severe conditions. Preprocessing included conversion to HSV color space and adaptive segmentation using red thresholds on the hue channel (0–10 and 160–180), saturation > 50, and value > 40. Statistical features, including mean, standard deviation, skewness, kurtosis, and entropy, were extracted and normalized using Z-Score. Six parameter combinations were tested with an 80:20 train-test split. The optimal configuration with n_estimators=80, max_depth=9, and min_samples_leaf=2 achieved an accuracy of 95.81%. The highest performance was achieved in the mild class with precision and recall of 98.91%, and stable results in the moderate (93.80%) and severe (94.74%) classes, with only a 0.94% difference. Cross-validation evaluation demonstrated excellent model stability, with an average accuracy of 95.30% and a standard deviation of 0.67%, indicating consistent performance across data subsets. Feature importance analysis showed the dominance of the hue and saturation channels, particularly kurtosis and mean saturation. This study demonstrates that a Random Forest-based allergy detection system using gum color is highly accurate and effective as a non-invasive screening tool in dental and oral health, especially in resource-limited settings, with the potential to improve early screening access in primary healthcare facilities.
Deteksi Penyakit Tanaman Padi (Oryza Sativa L.) Menggunakan Support Vector Machine (SVM) Dan Random Forest Pada Citra Daun Gulo, Bintang Karmila; Agustinus Rudatyo Himamunanto; Jatmika
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.660

Abstract

Rice (Oryza sativa L.) is a major food crop that is susceptible to disease attacks, which can reduce farmers' productivity and yields. This study aims to develop a digital image-based rice leaf disease classification system using the Support Vector Machine (SVM) and Random Forest algorithms. The dataset consists of three disease classes (Blast, Blight, and Tungro), which are processed through pre-processing stages such as resizing, normalization, and augmentation. Feature extraction is performed using HSV histograms, RGB average values, and Gray Level Co-occurrence Matrix (GLCM) to obtain color and texture characteristics. The data is then divided with a ratio of 80:20 for model training and testing. The evaluation results show that Random Forest provides the best performance with an accuracy of 97.73%, precision and recall values ??above 0.94, and an average F1 score of 0.98. This study shows that a machine learning-based image classification approach can be an effective solution for early detection of diseases in rice plants.