Claim Missing Document
Check
Articles

Found 3 Documents
Search

Implementasi Metode Adaptive Neuro Fuzzy Inference System (ANFIS) dalam Prediksi Harga Saham X Damayanti, Adelia; Agustina, Dwi
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi EULER: Volume 12 Issue 1 June 2024
Publisher : Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/euler.v12i1.25278

Abstract

Today, the stock market is one of the most important financial vehicles. Investors were concerned about X shares because it fluctuated significantly during Elon Musk's acquisition process. This study was aimed to predict the future price trend of X stocks. Thus, this analysis can assist investors in controlling X stocks. Data for this study were gathered from the Kaggle website. This study uses data from January 2016 to October 2022. The Adaptive Neuro Fuzzy Inference System (ANFIS) will be used to estimate the price of X stocks. The results demonstrated that the ANFIS approach accurately captured the pattern of stock price changes. Based on the accuracy test results, this method has an RMSE of 0.005. It demonstrates that the ANFIS method can accurately anticipate the price of X stock.
ANALISIS REGRESI ROBUST ESTIMASI-M PEMBOBOT HUBER DAN TUKEY BISQUARE PADA TINGKAT KEMISKINAN INDONESIA Damayanti, Adelia; Susanti, Mathilda
Jurnal Kajian dan Terapan Matematika Vol 10, No 2 (2024): Jurnal Kajian dan Terapan Matematika (Juli)
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/jktm.v10i2.19812

Abstract

AbstrakRegresi robust merupakan metode yang penting untuk menganalisis data yang mengandung outlier. Untuk mengetahui faktor-faktor yang mempengaruhi tingkat kemiskinan di Indonesia, dapat diterapkan analisis regresi linear dengan melihat pencilan atau outlier. Metodenya, yaitu dengan metode estimasi regresi robust estimasi M. Penelitian ini bertujuan untuk membandingkan keefektifan antara model regresi robust estimasi-M pembobot huber dan tukey bisquare untuk mengatasi outlier serta mengetahui faktor yang mempengaruhi tingkat kemiskinan di Indonesia tahun 2021. Berdasarkan uji signifikansi yang dilakukan, variabel independen yang paling berpengaruh terhadap tingkat kemiskinan di Indonesia adalah penduduk dengan sumber penerangan listrik PLN dan tingkat pengangguran terbuka. Dari dua metode estimasi-M yang dipilih, metode estimasi-M pembobot huber menghasilkan nilai RSE 3,706 dan adj R-square 53,15% sedangkan pembobot tukey bisquare menghasilkan nilai RSE 3,294 dan adj R-square 51,59%. Berdasarkan data tersebut, dapat disimpulkan bahwa metode regresi robust estimasi-M pembobot huber lebih efektif digunakan untuk mengatasi outlier pada data tingkat kemiskinan di Indonesia.Kata kunci: kemiskinan, pencilan (outlier), regresi robust, estimasi-M.
Cluster Analysis of Environmental Pollution in Indonesia Using Complete Linkage Method with Elbow Optimization Damayanti, Adelia; Utami, Wika Dianita; Novitasari, Dian Candra Rini; Intan, Putroue Keumala; Kurniawan, Mohammad Lail
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 7, No 2 (2023): April
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v7i2.12961

Abstract

The issue of environmental contamination remains unsolved. The problem continues to have a substantial detrimental impact. This research aimed to identify provinces in Indonesia with high or low levels of environmental pollution so that the government may offer treatment to provinces with high levels of pollution and seek a significant reduction in the incidence of environmental pollution in Indonesia. Clustering is required to identify provinces with high and low pollution levels using the complete linkage method because this method can provide tight clusters and is less impacted by outliers. The analysis of the complete linkage method with Elbow optimization revealed two optimal clusters, namely high and low clusters. The high cluster consists of three provinces: Central Java, West Java, and East Java. The low cluster consists of 31 provinces. This research used a Silhouette Coefficient validity test. The value of the Silhouette Coefficient is 0.75. The value indicates that the data object is in the correct cluster and that the cluster structure is relatively strong.