LESTARI, I. L.
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

ANALISIS EMPIRICAL ORTHOGONAL FUNCTION (EOF) BERBASIS SINGULAR VALUE DECOMPOSITION (SVD) PADA DATA CURAH HUJAN INDONESIA LESTARI, I. L.; NURDIATI, S.; SOPAHELUWAKAN, A.
MILANG Journal of Mathematics and Its Applications Vol. 15 No. 1 (2016): Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jmap.15.1.13-22

Abstract

Analisis Empirical Orthogonal Function (EOF) digunakan untuk mereduksi dimensi data yang berukuran besar dengan mempertahankan sebanyak mungkin variasi dari himpunan data asal. EOF merupakan suatu metode untuk menentukan pola-pola dominan pada data yang berevolusi dalam ruang dan waktu. Secara aljabar, EOF atau komponen utama yang diperoleh merupakan kombinasi linear dari semua peubah asli yang memiliki varians terbesar secara berurutan dan tidak berkorelasi dengan komponen utama sebelumnya. Metode EOF yang dilakukan pada penelitian ini menggunakan pendekatan Singular Value Decomposition (SVD). Analisis dilakukan pada data curah hujan TRMM 3B43 bulanan untuk wilayah cakupan Indonesia selama 204 bulan dan dihitung nilai kesalahan dari hasil reduksi data. Berdasarkan hasil analisis diperoleh lima nilai singular terbesar yang memiliki total varians sebesar 90.03%. Mode pertama (EOF1) menjelaskan 30,68% dari total varians dan merupakan varians terbesar yang mewakili hampir seluruh data. Mode EOF kedua sampai EOF kelima masing-masing menjelaskan 19.89%, 16.82%, 11.43% dan 11.19% dari total varians. Setiap mode EOF yang diperoleh menggambarkan pola spasial, sedangkan vektor singular menggambarkan pola temporal. Efektifitas dari lima mode EOF yang dihasilkan tersebut diuji untuk dapat menghampiri data asli. Hampiran data asli diperoleh dengan menentukan nilai kesalahan dari hasil reduksi menggunakan teknik error norm matriks.