Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prediksi Kelulusan Tepat Waktu Berdasarkan Riwayat Akademik Menggunakan Metode K-Nearest Neighbor Riadi, Imam; Umar, Rusydi; Anggara, Rio
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 2: April 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20241127330

Abstract

Abstract Graduating on time is a plenary achievement to be achieved by all students or prospective students. Graduation has 2 classifications such as graduating not on time and graduating on time. Graduation becomes an assessment of university accreditation and an assessment by the wider community. Universities graduate students with several standard criteria that must be possessed. It is expected that graduating students meet the graduation standard requirements within a maximum of 4 years of study period. Evaluation and monitoring of graduation is very important to do, one of which is by studying the history data of students who have graduated as an effort for students to graduate not to exceed the standard time that has been set. The graduation predictions carried out in research use the K-Nearest Neighbor classification rules with the research object being students. The attributes used in the research classification method are name, high school/vocational high school origin, high school/vocational high school origin, average grade in mathematics and length of study. The research phase begins with data collection, attribute selection, data cleaning, data transformation, selection of testing data and training data. The accuracy test obtained in the classification method research with data clusters k = 1, k = 2, k = 3, k = 4, k = 5, k = 6 and k = 7 produces a cluster with the highest k = 3 value. The results of testing the accuracy of research predictions using the confusion matrix produced the greatest accuracy according to the target, reaching 78% using a research object of 93 student data consisting of 78 training and 12 testing data. The test results point k=1 to point k=7, k=3 is the highest prediction accuracy value so that the research results become a source of knowledge for the faculty in predicting student graduation.   Abstrak Lulus tepat waktu adalah pencapaian paripurna ingin dicapai oleh semua mahasiswa atau calon mahasiswa. Kelulusan memiliki 2 klasifikasi seperti lulus tidak tepat waktu dan lulus tepat waktu. Kelulusan menjadi suatu penilaian akreditasi universitas dan penilaian oleh masyarakat secara luas. Perguruan tinggi meluluskan mahasiswa-mahasiwa dengan beberapa kriteria standar yang harus dimiliki. Diharapkan mahasiswa lulus memenuhi syarat standar kelulusan dalam waktu maksimal 4 tahun masa studi. Evaluasi dan pemantauan kelulusan sangat penting dilakukan, salah satunya dengan mempelajari data history mahasiswa yang telah lulus sebagai upaya mahasiswa lulus tidak melebihi waktu standar yang telah ditetapkan. Prediksi kelulusan yang dilakukan pada riset menggunakan kaidah klasifikasi K-Nearest Neighbor dengan objek penelitian yaitu mahasiswa. Atribut yang dipakai dalam penelitian metode klasifikasi yaitu nama, asal SMA/SMK, wilayah asal SMA/SMK, nilai rata-rata matematika dan lama studi. Tahapan penelitian diawali dengan pengumpulan data, pemilihan atribut, pembersihan data, transformasi data, pemilihan data testing dan data training. Pengujian akurasi yang didapatkan pada penelitian metode klasifikasi dengan klaster data k=1, k=2, k=3, k=4, k=5, k=6 dan k=7 menghasilkan klaster dengan nilai k=3 paling tinggi. Hasil pengujian akurasi prediksi penelitian menggunakan confusion matrix menghasilkan akurasi paling besar sesuai target yaitu mencapai 78% menggunakan objek penelitian sebanyak 93 data mahasiswa terdiri dari 78 training dan 12 data testing. Hasil pengujian point k=1 sampai point k=7, k=3 merupakan nilai akurasi prediksi yang paling tinggi sehingga hasil penelitian menjadi sumber pengetahuan untuk fakultas dalam prediksi kelulusan mahasiswa.
Efisiensi Penggunaan Daya Listrik Di Hotel Carrissima Palembang Yansuri, Daeny Septi; Putra, Dian Eka; Subianto, Subianto; Anggara, Rio
Jurnal Ampere Vol. 8 No. 1 (2023): JURNAL AMPERE
Publisher : Universitas PGRI Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31851/ampere.v8i1.9634

Abstract

The research was conducted by assuming when the hotel room was fully occupied by guests. This research is to find out in more detail about the use of energy, especially for electrical energy at the Carrissima Hotel Palembang, to find out and implement energy saving opportunities and increase the efficiency of electricity use. The research method used is the literature method, interview method, and observation method. From the calculations carried out, the results obtained for hotel lighting, especially in the hotel lobby, cannot be said to be effective in the use of electrical energy, from the calculations obtained the intensity of lighting is 16.25 Watt/m2, while the maximum limit specified is 20 Watt/m2, while for rooms hotels, the intensity of lighting is 5.16 Watt/m2, while the maximum limit specified is 17 Watt/m2. So the intensity of the Carrissima hotel room does not have an indication of energy wastage, but it is not efficient, lastly for the use of Air Conditioning (AC) at the Carrissima hotel, from the results of these calculations based on the Energy Consumption Index (IKE), where the level of comfort and energy saving in air-conditioned buildings is 23.75 to 37.75 W/m2. The use of air conditioning at the Carrissima hotel is above the convenience of wasting energy. The highest AC power intensity is on the 2nd and 3rd floors, which is 18.33 W/m2, while the lowest intensity is on the 1st floor, which is 1.38 W/m2.