Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENGARUH MOTIVASI, LINGKUNGAN KERJA DAN DISIPLIN KERJA TERHADAP KINERJA KARYAWAN PADA PT. YAMAHA MUSICAL PRODUCT INDONESIA Dermawan, Fariz; Dwiridotjahjono, Jojok
Jurnal Bisnis Indonesia Vol 11, No 02 (2020): Jurnal Bisnis Indonesia
Publisher : Program Studi Ilmu Administrasi Bisnis

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini bertujuan untuk mengetahui: (1) pengaruh motivasi, lingkungan kerja dan disiplin kerja terhadap kinerja karyawan pada PT. Yamaha Musical Product Indonesia (2) pengaruh motivasi terhadap kinerja karyawan pada PT. Yamaha Musical Product Indonesia(3) pengaruh lingkungan kerja terhadap kinerja karyawan pada PT. Yamaha Musical Product Indonesia (4) pengaruh disiplin kerja terhadap kinerja karyawan pada PT. Yamaha Musical Product Indonesia. Metode penelitian ini menggunakan metode kuantitatif. Populasi dalam penelitian ini adalah karyawan kantor PT. Yamaha Musical Product Indonesia. Teknik penarikan sampel menggunakan sampling jenuh, yaitu mengambil seluruh sampel sebanyak 85 responden. Teknik analisis data yang digunakan adalah analisis regresi linier berganda. Berdasarkan hasil penelitian ini bahwa Fhitung yaitu H0 ditolak dan H1 diterima sehingga dapat disimpulkan bahwa variabel bebas Motivasi (X1), Lingkungan Kerja (X2) dan Disiplin Kerja (X3) memiliki pengaruh signifikan terhadap variabel terikat Kinerja Karyawan (Y) PT. Yamaha Musical Product Indonesia. Hasil thitung Motivasi yaitu H0 ditolak dan H1 diterima, hal ini berarti Motivasi (X1) berpengaruh signifikan secara parsial terhadap Kinerja Karyawan (Y) PT. Yamaha Musical Product Indonesia. Hasil thitung Lingkungan Kerja yaitu H0 ditolak dan H1 diterima, hal ini berarti Lingkungan Kerja (X2) berpengaruh signifikan secara parsial terhadap Kinerja Karyawan (Y) PT. Yamaha Musical Product Indonesia. Sedangkan hasil thitung Disiplin Kerja (X3) yaitu H0 ditolak dan H1 diterima, hal ini berarti Disiplin Kerja (X3) berpengaruh signifikan secara parsial terhadap Kinerja Karyawan (Y) PT. Yamaha Musical Product Indonesia. Kata kunci : Motivasi, Lingkungan Kerja, Disiplin Kerja, Kinerja Karyawan
Optimizing Book Genre Classification through AI on a Web Platform Dermawan, Fariz; Latifah, Noor
bit-Tech Vol. 8 No. 1 (2025): bit-Tech
Publisher : Komunitas Dosen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32877/bt.v8i1.3001

Abstract

In the rapidly evolving digital era, the exponential growth of online book collections poses challenges in efficiently classifying literature according to genre. Manual classification methods are often time-consuming, subjective, and inconsistent, necessitating the adoption of advanced, automated approaches. This study aims to develop and implement an Artificial Intelligence (AI)-based genre classification system integrated into a web platform to enhance the accuracy, efficiency, and user experience in book discovery. Leveraging Machine Learning (ML) algorithms—particularly Support Vector Machine (SVM), Naïve Bayes, Decision Tree, Random Forest, and Deep Learning—alongside Natural Language Processing (NLP) techniques such as tokenization, stemming, and TF-IDF, the system analyzes book descriptions and synopses to determine the most appropriate genre. The research follows a qualitative and literature study approach, utilizing a dataset sourced from Kaggle, with preprocessing steps to remove noise and convert text into numerical representations. Experimental results demonstrate that the SVM model achieved the highest accuracy, precision, recall, and F1-score compared to other tested algorithms, effectively handling high-dimensional and non-linear data. The developed web application features an interactive dashboard, real-time classification, and a hybrid recommendation system. This work confirms the feasibility and advantages of AI-driven genre classification for large-scale digital libraries and online bookstores. While limitations such as data imbalance and overlapping genre semantics remain, the findings provide a strong foundation for future research employing larger, more diverse datasets and advanced deep learning architectures to further improve classification performance.