Pramana, Agus Hari
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALYSIS OF LANDSLIDE DISASTER POTENTIAL IN MEULABOH AREA, WEST ACEH REGENCY, ACEH USING RESISTIVITY AND GEOSPATIAL METHODS Agnia, Lasin; Amsir, Amsir; Marwan, Marwan; Masrurah, Zakia; Pramana, Agus Hari
Indonesian Physical Review Vol. 8 No. 2 (2025)
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/ipr.v8i2.469

Abstract

Meulaboh, in West Aceh Regency, is one of the areas with potential for landslides. The goal of this research is to identify soil conditions that could lead to landslides based on resistivity data, as well as to analyze the distribution of landslide potential using geospatial data. This research provides benefits to various stakeholders, including the government. It contributes to improved disaster mitigation planning, reduced risk of losses, and the selection of appropriate materials to construct more disaster-resilient infrastructure. The research methods used are 2D resistivity and geospatial methods with weighted overlay analysis. Based on the processing results of 2D resistivity data from profiles 1 and 2, the study area is characterized by silt, sand, and sandstone. The resistivity values of the material in profile 1, identified for silt, range between 1 and 119 Ω.m at depths of 2-59 meters. For sand, the resistivity values range between 120-225 Ω.m at 2-61 meters depths. Sandstone has resistivity values that range between 226-500 Ω.m at depths of 3-62 meters. The resistivity values of the material in profile 2, identified for silt, range between 1-119 Ω.m at depths of 1.5-60 meters. For sand, the resistivity values range between 120-225 Ω.m at 9-59 meters depths. Sandstone has resistivity values that range between 226-500 Ω.m at depths of 15-39.4 meters. The presence of silt (1-119 Ω.m) increases the potential for landslides due to its cohesive nature. Based on the weighted overlay analysis processing results, the study area has a moderate potential for landslides. The study area has characteristics such as a gentle to steep slope (8-45%), a high rainfall rate (2500-3000 mm/yr), a lithology consisting of rocks from the Tutut Formation, including silt, sand, and a small amount of conglomerate, and land that is used for plantations and rice fields.
SUBSURFACE SOIL CHARACTERISATION USING VERTICAL ELECTRICAL SOUNDING FOR SUPPORTING INFRASTRUCTURE DEVELOPMENT AT SYIAH KUALA UNIVERSITY Amsir, Amsir; Masrurah, Zakia; Aflah, Nurul; Pramana, Agus Hari; Baramsyah, Haqul
Indonesian Physical Review Vol. 9 No. 1 (2026)
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/ipr.v9i1.529

Abstract

This study characterises the subsurface soil properties in the western sector of Syiah Kuala University, specifically the Kopelma Darussalam area, using Vertical Electrical Sounding (VES) with a Schlumberger configuration. Nine measurement points were deployed to obtain resistivity profiles supporting infrastructure development planning. The results indicate that the surface layer (0–15 m) exhibits high resistivity (12.0–270.2 Ωm), suggesting dry sandy material with high permeability and sufficient bearing capacity. Below 15–30 m, resistivity decreases (1.9–26.5 Ωm), indicating a water-saturated layer potentially functioning as an aquifer, which has implications for soil stability. The deepest layers (>30 m) show low resistivity (<5 Ωm), reflecting low-permeability materials less suitable for heavy construction, though some high-resistivity anomalies suggest dense sandstone formations suitable for foundations. These findings provide preliminary geotechnical zoning insights, aiding developers in selecting appropriate foundation locations, improving construction safety, and ensuring long-term infrastructure stability at University Syiah Kuala.