Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Validation Method for Digital Flow Meter for Fuel Vendors Megantoro, Prisma; Husnan, Danar Aulia; Sattar, Mian Usman; Maseleno, Andino; Tanane, Omar
Journal of Robotics and Control (JRC) Vol 1, No 2 (2020): March
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1210

Abstract

Research on the design of fuel measuring device for vendors using Arduino Mega 2560 microcontroller and positive displacement flow meter sensor was conducted. It aimed to design and create a prototype of fuel measuring device for retail traders, and to find error values on the device. The research began with searching for reference books, making hardware and programming, and finally testing the device. The components used were Arduino Mega 2560, positive displacement flow meter sensor, keypad, selenoid valve and 4x20 LCD. The test was performed by comparing the results of the measuring cup to the number displayed on the LCD, followed by reproducibility. Data collection was carried out every volume of 500ml, 1000ml, 1500ml, and 2000ml. The results of the research showed that the error value was 2.24% with the comparison of 1.91%. Several factors affecting the highness of error value were human factor, sensor and device factor, as well as the comparison device being used. Referring to the error value that smaller than 5%, this device is worthy for mass production
Design of Laboratory Scale Fluid Level Measurement Device Based on Arduino Apsari, Nur Fitri; Megantoro, Prisma; Sattar, Mian Usman; Maseleno, Andino; Tanane, Omar
Journal of Robotics and Control (JRC) Vol 1, No 5 (2020): September
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.1530

Abstract

Measuring the height of a liquid using analog is very difficult, and its accuracy is very low. It is more accurate to measure liquid level using digital technology. Measurements of the correct fuel level are needed to measure fuel purchases at fuel stations or fuel retailers. The study aimed to design laboratory-level fuel level measurements based on the Arduino Uno microcontroller. The method used was a direct comparison between the measuring instrument and a ruler as a measuring standard. This device used a gas gauging sensor on the vehicle and an Arduino Uno microcontroller to process data and display data on the LCD and LabView. The results of the fluid level measurement could be used to determine the height of fuel surface. The error rate of the measuring instrument was ± 3% in a calm and bumpy state. The results showed that the device is suitable for use in measurement.