Claim Missing Document
Check
Articles

Found 3 Documents
Search

PROFIL MEDIA PEMBELAJARAN FLASH MATERI PERTUMBUHAN DAN PERKEMBANGAN PADA TUMBUHAN PUSPITASARI, DIANITA
Berkala Ilmiah Pendidikan Biologi (BioEdu) Vol 3 No 2 (2014)
Publisher : Program Studi Pendidikan Biologi, FMIPA, Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Flash media is a media that can visualize something which is abstract into concrete and tangible. Development of research aims to produce flash learning media in the topic of growth and development in plants which is feasible theoritically. The feasibility of media based on the feasibility of material and media. This development research used ASSURE model which consist of six phases, starts from analyze learner until evaluate and revise. Then, the media tested limitedly toward students. The result of media feasibility theoritically consist of topic and media. The topic and material very fasible and feasibility got the same value about 3,64 and 3,62. Based on the result of theoritically feasible, flash media of growth and development in plants is feasible to be used in the learning process. Keywords : Growth and Development in Plants Flash Media, Theoretical feasibility
Analisis Risiko Keamanan Sistem Informasi DP3AK Provinsi Jawa Timur menggunakan Metode Octave dan FMEA Puspitasari, Dianita; Safitri, Eristya Maya; Barmin, Aidah Maryam; Fadlilah, Imamah Nur
JOINS (Journal of Information System) Vol. 9 No. 2 (2024): Edisi November 2024
Publisher : Fakultas Ilmu Komputer, Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/joins.v9i2.8455

Abstract

Teknologi yang semakin cepat berkembang banyak dimanfaatkan oleh berbagai perusahaan untuk mempermudah dalam menjalankan aktivitas dalam perusahaannya. Salah satunya yaitu perusahaan pemerintah, Dinas Pemberdayaan Perempuan, Perlindungan Anak, dan Kependudukan Provinsi Jawa Timur yang memanfaatkan perkembangan teknologi untuk menjalankan berbagai aktivitas penting. Namun dibalik kemudahan dalam pemanfaatan teknologi, terdapat risiko yang harus dihadapi oleh DP3AK dalam menerapkan teknologi. Salah satunya yaitu berupa ancaman terhadap keamanan sistem informasi, dimana keamanan SI DP3AK ini mempunyai peranan yang sangat krusial dalam melindungi informasi yang sensitif dan penting. Maka dari itu penting bagi DP3AK untuk memahami risiko yang dihadapinya serta bagaimana cara menangani risiko tersebut. Penelitian ini menggunakan metode OCTAVE dan FMEA. Penelitian ini menunjukkan bahwa dari 13 aset yang diteliti terdapat 3 aset yang mempunyai nilai risiko yang tinggi, 5 aset dengan nilai risiko medium, 4 aset dengan nilai risiko rendah, dan 1 aset yang memiliki nilai risiko sangat rendah. Adapun aset dan risikonya yang memiliki nilai risiko tinggi yaitu aset aplikasi e-KembangPernik yang memiliki risiko berupa hardware failure, aset aplikasi Super Sinden yang memiliki risiko berupa software failure, dan aset data administrasi kependudukan provinsi jawa timur yang memiliki risiko berupa backup data failure.
A Multilingual Approach to Aspect-Based Sentiment Analysis on Gobis Suroboyo Application Reviews using LDA and SVM Puspitasari, Dianita; Wahyuni, Eka Dyar; Permatasari, Reisa
Aviation Electronics, Information Technology, Telecommunications, Electricals, and Controls (AVITEC) Vol 7, No 2 (2025): August
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28989/avitec.v7i2.3033

Abstract

The GOBIS application, developed by the Surabaya City Transportation Department, is a digital service designed to provide public transportation information and reduce traffic congestion. Despite having exceeded 100,000 downloads, the application has received numerous complaints from users, as reflected in the multilingual reviews on its platform. To ensure analytical consistency, this research focuses solely on reviews in Indonesian and English. Using Aspect-Based Sentiment Analysis (ABSA), this study employs Latent Dirichlet Allocation (LDA) for aspect identification and Support Vector Machine (SVM) for sentiment classification. The aim of this research is to determine the dominant aspects in user feedback and evaluate the effectiveness of the Support Vector Machine (SVM) model in classifying multilingual reviews. The research results show six main aspects that frequently appear in reviews, namely Application Features and Development, User Suggestions and Service Innovation, Error and Location Accuracy, Delay and Application Usability, Comfort and Service Quality, as well as Route Tracking and Vehicle Information. The Support Vector Machine (SVM) model, tested with 10-fold cross-validation, demonstrates consistent performance, achieving balanced metrics accuracy (74.16%), precision (73.76%), recall (73.54%), and F1-score (73.63%). This highlights its capability in handling multilingual sentiment analysis for application improvement.