Claim Missing Document
Check
Articles

Optimization of Process Parameters for A Wind Turbine in A Ducting System Through The Taguchi-Pareto-DEMATEL Method Oke, Sunday Ayoola; Abayomi, Oluwatayo Johnson
International Journal of Industrial Engineering and Engineering Management Vol. 4 No. 1 (2022)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v4i1.5531

Abstract

In a heating, ventilation, and air conditioning (HVAC) unit, ducting systems with wind turbines are responses to the system’s high wind energy yields. However, the efficiency of the system is a challenge. To tackle this issue, optimization of process parameters plays a central role. Unfortunately, while applying the Taguchi method as an optimization procedure for high wind energy yields, the existing procedures are not clear enough to project a deep understanding of how to establish priorities among the system's parameters and yet showcase relationships among them. Consequently, this study proposes a new approach, the Taguchi-Pareto DEMATEL (Decision making trial and evaluation laboratory), to establish priorities among the process parameters and concurrently define associations among the parameters of the wind turbine inducting system. The proposed method amalgamates the Taguchi-Pareto method, which prioritizes the process parameters and minimizes the anticipated value of the variance with DEMATEL. The DEMATEL method is infused into the structure to verify interconnection among the wind turbine process parameters and establish a map to show the comparative association within the parameters. Thus, the DEMATEL framework probes and solves the complex energy yield problem of the wind turbine. The parameters used are input air pressure, ducting height, the distance between the blower and the pipe, total effective length, and the gap between the truck and runout. The desired optimal value of parameters for the proposed method are as follows: P2H2TG2EL1BD1, which is interpreted as 2.5m/s of air pressure, 0.5in of height, 1in of truck gap, 0.5in of effective length, and 0.5in of blower distance. The optimized parameters of a ducted wind turbine in an HVAC system could be of vast interest to HVAC systems to plan and monitor wind turbine performance.
Analyzing The Effect of Aspect Ratios on Optimal Parametric Settings Using Taguchi, Taguchi-Pareto, and Taguchi-ABC method: A Case Study in Turning Operations for The Inconel X750 Alloy Adegoke, Ridwan Majekodunmi; Oke, Sunday Ayoola; Nwankiti, Ugochukwu Sixtus
International Journal of Industrial Engineering and Engineering Management Vol. 4 No. 1 (2022)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v4i1.5653

Abstract

The aspect-based Taguchi optimization approaches have been newly accepted as important routes to optimizing the turning experimental parameters. Unfortunately, due to its embryonic development, scholars have left unexplained the effects of introducing the aspect ratios on the optimal parametric setting. To correct this deficiency, this article proposes an approach to evaluating the effects of introducing aspect ratios in turning experiments, combined with direct factors, on the optimal parametric settings. To correct this deficiency, the purpose of this article is to highlight that a standard universal evaluation method is absent in optimization analysis using the Taguchi method; it proposes an approach to evaluating the effects of introducing aspect ratios in turning experiments, in combination with direct factors, on the optimal parametric settings. Using A novel method of establishing the influence of introducing aspect ratios on the optimal parametric settings is suggested using literature review, and the examination method may be a solid basis for optimal parametric setting evaluations in future undertakings of turning operational evaluations. The Inconel X750 alloy is considered in turning operations, and experimental data from the literature are used to illustrate the method. This article finds that quantifiable differences in the mean values of optimal parametric settings exist for the turning operation of Inconel X750 alloy. The study's originality is its attention to the aspect ratio analysis regarding the optimal parametric setting in a wide range of values. This article aims to initiate discussions for a universal agreement on how the influence of introducing the aspect ratios in the factor-level combination framework of the Taguchi method may be constituted. The utility of this research effort is to enhance resource distribution planning fog turning zero material.
Optimization of Process Parameter of Tungsten Inert Gas Welding for Austenitic Stainless Steel using Grey Wolf Optimization Adekola, Anthony Ozimu; Oke, Sunday Ayoola; Nwankiti, Ugochukwu Sixtus
International Journal of Industrial Engineering and Engineering Management Vol. 4 No. 2 (2022)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v4i2.5748

Abstract

Optimization of welding parameters is essential on austenitic stainless steel for industrial applications since they declare the best parameters compared with prioritized constraints. However, available optimization methods, such as the Taguchi method, widely used in this research domain, are weak. Their results are merely comparative and fail to particularly show the specific factor that displays the highest performance in the process. In this paper, the aim is specifically to position the parameters in order of importance and present them in a grey wolf optimization framework. The ultimate tensile strength and yield strength were optimized, and the optimization was conducted using the C++ programming code. Literature data were analyzed for austenitic stainless steel under un-notched/smooth and notched specimen conditions. Empirical models were developed for the ultimate tensile strength and yield strength, among other principal criteria of the material. For the ultimate tensile strength, the best value was obtained at the 100th iteration as 640.75. For the yield strength, the best value of 394.98 was obtained after 100 iterations. A value of 31.07 for the PE was obtained. These results are for the unnotched specimens. However, the PE, NTS, and yield strength values for the notched specimens are 16.32, 780.12, and 494.46, respectively. Based on the findings of this study and compared with other optimization methods, the optimal parameters and outputs predicted using the grey wolf optimization approach were found to produce reliable results. This shows that the grey wolf optimization approach is a good option for predicting the optimal parameters of the tungsten arc welding process by utilizing austenitic stainless steel. The usefulness of this research effort is to help process engineers to implement robust and effective cost decisions in the production of materials based on austenitic stainless steel.
An Application of Data Envelopment Analysis in the Selection of the Best Response for the Drilling of Carbon Fiber-reinforced Plastic Composites Adedeji, Wasiu Oyediran; Odusoro, Salome Ifeoluwa; Adedeji, Kasali Aderinmoye; Rajan, John; Oke, Sunday Ayoola; Oyetunji, Elkanah Olaosebikan; Nwankiti, Ugochukwu Sixtus
International Journal of Industrial Engineering and Engineering Management Vol. 5 No. 1 (2023)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v5i1.5792

Abstract

In the drilling operation, defects such as delamination at exit and entry are very disturbing responses that impact the efficiency of the drilling process. Without control, an exponential growth in the amount of drilled components with defect quantities may result. Thus, the process engineer has input in attaining the desired production levels for components in the drilling process. Consequently, this article deploys a novel method of data envelopment analysis to evaluate the relative efficiency of the drilling process in reducing the defects possible in the producing components from the CFRP composites. The high-speed steel drill bits were utilized to process the CFPs, while the responses considered are the entry and exit determination, thrust force, and torque, among others. Literature experimental data in twenty-seven experimental counts were summarized into fewer groups and processed through the data envelopment analysis method. The results show that capturing the CFRP composite responses is feasible, providing an opportunity for enhanced efficiency and a situation where undesirable defects in the CFRP composite production process may be eradicated. The article’s uniqueness and primary value are in being the foremost article in offering an updated vast representation of the comparative efficiency of CFRP composite parameters within the literature for the composite area. The work adds value to the CFRP composite literature by envisaging and understanding the comparative efficiency for the parameters, identifying and separating the best from the worst decision-making unit. It also reveals how the parameters are linked by their relative placements. The article's novelty is that using data envelopment to compare the efficiency in reducing drilling defects such as entry and exit determination, among others. The method’s utility is to provide information for cost-effective drilling operations during the planning and control phases of the operation.
Optimizing The Machining Process of IS 2062 E250 Steel Plates with The Boring Operation Using a Hybrid Taguchi-Pareto Box Behnken-teaching Learning-based Algorithm Abdullahi, Yakubu Umar; Oke, Sunday Ayoola
International Journal of Industrial Engineering and Engineering Management Vol. 4 No. 2 (2022)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v4i2.5820

Abstract

In this article, a new method termed the Taguchi-Pareto-Box Behnken design teaching learning-based optimization (TPBBD–TLBO) was developed to optimize the boring process, which promotes surface roughness as the output. At the same time, the speed, feed, and depth of cut are taken as the inputs. The case examines experimental data from the literature on the boring of IS 2062 E250 steel plates. The proposed method draws from a recent idea on the Taguchi-Pareto-Box Behnken design method that argues for a possible relationship between the Taguchi-Pareto method and the Box Behnken design method. This idea was used as a basis for the further argument that teaching learning-based optimization has a role in the further optimization of the established TPBBD method. The optimal solutions were investigated when the objective function was generated using the Box Behnken design in a case. It was replaced with the regression method in the other case, and the python programming codes were used to execute the computations. Then the optimal solutions concerning the parameters of speed, feed rate, depth of cut, and nose radius were evaluated. With the Box Behnken as the objective function for the TLBO method, convergence was reached at 50 iterations with a class population of 5. The optimal parametric solutions are 800 rpm of speed, 0.06 min/min of feed rate, 1 min for depth of cut, and 0 min for nose radius. On the use of the regression method for the objective function, while the TLBO method was deployed, convergence was experienced after 50 iterations with a class population of 200 students. The optimal parametric solution is 1135rpm of speed, 0.06 min/min of feed rate, 1024 min of the depth of cut, and 0.61 min of nose radius. The speed, depth of cut, and nose radius showed higher values, indicating the use of more energy resources to accomplish the optimal goals using the regression method-based objective function. Therefore, the proposed method constitutes a promising route to optimize further the results of the Taguchi-Pareto-Box Behnken design for boring operation improvement.
Application of Fuzzy Analytic Hierarchy Process (FAHP) to Improve Precision and Certainty on Safety Conformity Evaluation in a Bottling Plant Sawyerr, Babatunde Alade; Fasina, Ebun; Adedeji, Wasiu Oyediran; Martins, Shedrach Aliakwe; Rajan, John; Oke, Sunday Ayoola
International Journal of Industrial Engineering and Engineering Management Vol. 5 No. 1 (2023)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v5i1.6498

Abstract

With the bottling plant facing safety impacts, the commitment toward zero levels of accidents needs to be evaluated. However, the perception and measurement of safety conformity by the safety manager that is subjected to imprecision and uncertainty are hardly evaluated correctly with the present dominant approach of using crisp numeric values. This article presents a fuzzy analytic hierarchy process (FAHP) approach to reduce the imprecision and uncertainty in the safety conformity multicriteria decision-making results. The method establishes and selects the best safety conformity factors in alignment with different criteria within the segments of a Nigerian bottling plant. The fuzzy synthetic extent concerning each alternative, the degree of possibility, prioritizing weights, and the choice of the best criterion were judged based on the maximum weight in the FAHP evaluation process. The average weight criterion was used to distinguish the best from the worst units within each segment. The results reveal the criteria weights as 0.4937 for haulage drillers (warehouse), 0.3038 for palletizers (manufacturing corridor), 0.3333 for syrup mixers/lab technicians for quality assurance, and no choice of the best parameter for the fleet workshop. However, the highest weight for the contractors is 0.3201, which is for contractor 1. To compare the best and worst criteria in the present study and a literature source, the optimal criteria choices of safety conformity conflicted in all the segments. The principal difference between the present method and the analytic hierarchy process approach is integrating fuzzy application to the analytical hierarchy process to provide a more accurate safety conformity assessment, yielding reliable and informative results representing the vagueness of the bottling process decision-making process. This unique approach provides an opportunity for the production workers to work more collaboratively towards attaining new solutions to the uncertainty and imprecision problem in safety conformity for the bottling plant.
Vehicle Exhausts Emission Pattern Decisions for Logistic Services and Packing Industries with Orthogonal Array-Based Rough Set Theory Agada, Alexander Iwodi; Oke, Sunday Ayoola; Rajan, John; Jose, Swaminathan; Benrajesh, Pandiaraj; Oyetunji, Elkanah Olaosebikan; Adedeji, Kasali Aderinmoye
International Journal of Industrial Engineering and Engineering Management Vol. 5 No. 2 (2023)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v5i2.7740

Abstract

Precise monitoring of vehicle emissions in green logistics, focusing on the contributions of vehicles from packing industries, is crucial for many issues. It helps to understand the total emissions and gain insights into the mechanism of vehicle-associated environmental concerns. Notwithstanding, a key issue when monitoring vehicle emissions is the effective discrimination problem for different patterns generated from the parameters. Data from the packing industry are available from distribution networks but its pattern cannot be discriminated. Given this background, this article presents a new method of the orthogonal array-based rough set to discern patterns of the parametric behaviors to monitor emissions from vehicle exhausts in the packing industry. The proposed method is based on an Indian logistics network and delivery system data, which was obtained from previous work in the literature. By setting controls on the parameters of the packing industry which includes revenue obtained, packing units sold, growth rate, carbon-dioxide equivalent, materials utilized, and quantity consumed, the method was able to discern the patterns of the parametric behavior. The orthogonal arrays, which are developed, form factors (parameters) and levels to ascertain a balanced and uniform analysis of the various groups of options. Indiscernibility and approximation concepts of fuzzy sets are then applied to arrive at the outcome. Unlike previous studies, this study eliminates the need for tracking data, assumptions, and external information to establish the set membership. However, it utilizes the available information within the data. The rough set analysis indicates that there are no discernable patterns or rules that distinguish between "Yes" and "No" decisions. The method of rough set illustrated in this work shows the feasibility of the approach in the Indian packing industry. The method is useful for the logistics manager and government agencies responsible for the control of vehicle-generated greenhouse emissions.
Application of Data Envelopment Analysis for Performance Efficiency Evaluation of Oil Palm Empty Bunch Fruit Composites in The Aerospace Industry Udoibe, Ndifreke John; Oke, Sunday Ayoola; Ayanladun, Chris Abiodun; Rajan, John; Jose, Swaminathan; Adeyemi, Olusola Michael; Oyetunji, Elkanah Olaosebikan; Adedeji, Kasali Aderinmoye
International Journal of Industrial Engineering and Engineering Management Vol. 5 No. 2 (2023)
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/ijieem.v5i2.7741

Abstract

In this study, we propose the data envelopment analysis method as a scheme to determine the technical efficiency of a set of parametric inputs of the water absorption process when developing the oil palm particulate composite treated with an alkali solution. Although alkali-treated oil palm bunch composites have been analyzed previously for water absorption, a single parameter such as water absorption rate prevails in analyses. Unfortunately, multiple inputs and multiple outputs have been ignored and the efficiency evaluation of such composites has been missing in the literature. To address this gap, the present study exploits the linear programming theory and formulated models for each decision-making unit and solves that formulation for optimum value determination for inputs of the composites. This study investigates the technical efficiency of the water absorption in the oil palm empty fruit bunch composite development process. Overall, judging the performance of the parameters regarding the frequency of attaining 100% efficiency, analysis was performed on the average performance of all parameters in all sixteen scenarios. In this regard, the efficiency of particulate loading was 36.1%, for composite weight plus mold, it was 96.3% and for initial weight, the average efficiency score was 67.8%. It is suggestive that composite weight plus mold with an average efficiency of 96.3% is the best parameter while particulate loading with 36.1% is the worst parameter. Thus result is consistent with the result based on each scenario. From the perspective of DMUs, DMU11 with a score of 78.4% is the best ranking unit while DMU14 is the work ranking unit with an efficiency score of 60.9%. Besides, the average efficiency score for all the DMUs is 66.7%. The work is important to composite development engineers and for policy decision-making.
INFLUENCE OF CO-FIRING PKS (PALM KERNEL SHELL) WITH COAL ON BOILER EFFICIENCY COMBUSTOR TYPE : RECIPROCATING SERVO GRATE Emorinken, Samuel Olayinka; Ogunmola, Bayo Yemisi; Alozie, Nehemiah Sabinus; Oluwo, Adeyinka; Rajan, John; Jose, Swaminathan; Oke, Sunday Ayoola
International Journal of Mechanical Engineering Technologies and Applications Vol. 6 No. 1 (2025)
Publisher : Mechanical Engineering Department, Engineering Faculty, Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/MECHTA.2025.006.01.15

Abstract

The astronomical increase in the cost of inputs for the coating process without a corresponding increase in market share and prices of goods is a threat to surface coating manufacturers. Despite this threat, very few discussions focus on the efficiency of the coating process. The purpose of this paper is to analyse the efficiency of the coating process while using the 67Ni18Cr5Si4B coating powder on C45 steel substrate material. The data envelopment analysis was used to obtain the relative efficiency of parameters, namely, spray velocity, powder feed rate, spray distance, porosity, adhesion strength, and microhardness. This in turn contributed to analyzing the efficiencies of the levels of the inputs to provide efficiency information on the output from the averages. Data envelopment analysis regards inputs and outputs as decision-making units (DMUs) and is operated by minimizing inputs or maximizing the outputs. Using data envelopment analysis to obtain the relative efficiency of coating powder becomes an enlightening practice. With this, the levels of each system were termed to be efficient, if the efficiency factor (hk) is equal to one. In a real sense, the levels could be obtained by calculating the average values regarding a parameter. The result of the study was enhanced with the aid of the linprog facility in Matlab. The efficiency was obtained for each level as 0.92,1, and 1 respectively. Hence, levels 2 and 3 are efficient but level 1 is inefficient according to the data envelopment analysis. On average, the overall efficiency is 0.95 which is termed inefficient.
Evaluation of Ecological Minimum Quantity Lubrication Turning of AISI 4340 Alloy for Parametric Choices Using the Distance from Average Solution (EDAS) Method Ozule, Chukwuka Prosper; Oke, Sunday Ayoola; Rajan, John; Oluwo, Adeyinka; Oyekeye, Manasseh Olusegun
IJIEM - Indonesian Journal of Industrial Engineering and Management Vol 5, No 3: October 2024
Publisher : Program Pascasarjana Magister Teknik Industri Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijiem.v5i3.22752

Abstract

Flood-cutting fluids and minimum quantity lubrication (MQL) schemes are associated with high cutting fluid costs and health effects, which should be regulated through the selection and optimization of parameters. This paper applies the distance from average solution (EDAS) method to assess the criteria value regarding three alternatives (cutting depth, cutting speed and feed) using CuO nano lubricants discharged in minimum quantity lubrication. Three responses, including beneficial (cutting speed, feed and cutting depth) and non-beneficial (cutting force) responses were used. A novel weight determination scheme based on the beneficial and non-beneficial criteria was established for the first time as inputs to the EDAS method. The weights established 0.1504, 0.2832, 0.2832 and 0.2832 for cutting force, cutting speed, feed and cutting depth, respectively. The results show a multi-modal best performance of 0.8438, which occurs in multiple experimental trials of 2, 4, 5, and 8.  The optimization implemented in this study uses all inputs and the CuO nano lubricant was considered in each case using a spreadsheet for the evaluation. Case study data illustrating the uniqueness of the method using the literature data shows that EDAS is robust enough to be applied in machining activities.