Saputro, Meidika Bagus
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Comparison of Naive Bayes Classifier and K-Nearest Neighbor Algorithms with Information Gain and Adaptive Boosting for Sentiment Analysis of Spotify App Reviews Saputro, Meidika Bagus; Alamsyah, Alamsyah
Recursive Journal of Informatics Vol 2 No 1 (2024): March 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/rji.v2i1.68551

Abstract

Abstract. At this time, the development of technology are increase rapidly. One of the issue that appear with advance technology is data volume in the world has increase too. With the large data volumes that exist in the world it can be used to some purpose in many field. Entertainment is one of the field that have many interest from user in this world. Spotify is the example of entertainment apps that provided by Google Play Store to give online music streams to their users. Because that apps is provided by Google Play Store, many reviews of the user about the apps it can be classified to know the positive, negative, or neutral. One way to classified the review of user is make sentiment analysis. In this paper, to classify the review we use naïve Bayes classifier and k-nearest neighbors that will be compared with adding Information gain as feature selection and adaptive boosting as boosting algorithm of each classification algorithm that we used. The result of classification using naïve Bayes classifier with adding Information gain and adaptive boosting is 87.28% and k-nearest neighbor with adding information gain and adaptive boosting can perform accuracy of 80.35%. Purpose: Knowing the result each of accuracy from the naïve Bayes classifier and k-nearest neighbor algorithm with adding information gain and adaptive boosting that we used and know how to doing the sentiment analysis step by step with the methods that chosen in this study. Methods/Study design/approach: This study applied data preprocessing, lexicon based labelling with TextBlob, Normalization, Word Vectorization using TF-IDF, and classification with naïve Bayes classifier and k-nearest neighbor, information gain as feature selection, and adaptive boosting as boosting algorithm to boost the accuracy of classification result. Result/Findings: The accuracy of naïve Bayes classifier with adding information gain and adaptive boosting is 87.28%. Meanwhile, by k-nearest neighbor with adding information gain and adaptive boosting reach the accuracy of 80.35%. This result obtained by using 60.000 dataset with data splitting 80% as data training and 20% as data testing. Novelty/Originality/Value: Implementing information gain as feature selection and adaptive boosting as boosting algorithm to naïve Bayes classifier is prove that it can be increase the accuracy of classification, but not same when implementing in k-nearest neighbor. So, for the future research can applied another classification algorithm or feature selection to get better result.
Accuracy of classification poisonous or edible of mushroom using naïve bayes and k-nearest neighbors Hamonangan, Roni; Saputro, Meidika Bagus; Atmaja, Cecep Bagus Surya Dinata Karta
Journal of Soft Computing Exploration Vol. 2 No. 1 (2021): March 2021
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v2i1.26

Abstract

Mushrooms are plants that are widely consumed by the general public, but not all mushrooms can be consumed directly, because the types of mushrooms are feasible and it is still too difficult to distinguish, then there are several ways to identify fungi, namely by means of morphology. The morphology referred to in this paper is the morphology of fungi which includes color, habitat, class, and others. We got the morphology of this mushroom from a datasets we get from UCI Machine Learning with the 23 atribut that we use in the program. In determining the classification of this fungus we use the Naive Bayes algorithm which produces an accuracy of around 90,2% which we then improve again so that it reaches 100% accuracy using the K-Nearest Neighbors algorithm. Furthermore, in this case to prove accuracy that we had before, we use calculation accuracy with confusion matrix to show it the accuracy of classification poisonous or edible mushroom.
Classification of potential customers using C4.5 and k-means algorithms to determine customer service priorities to maintain loyalty Syani, Nur Hazimah; Amirullah, Afif; Saputro, Meidika Bagus; Tamaroh, Ilham Alzahdi
Journal of Soft Computing Exploration Vol. 3 No. 2 (2022): September 2022
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v3i2.89

Abstract

The increasing competition among Middle-Class Micro Enterprises (MSMEs) is a problem because business actors must improve techniques and strategies to maintain customer satisfaction, and the number of customers continues to increase. Customers are an essential asset for the company. To maintain customer loyalty with promising prospects for the company, a strategy is needed to support this. Strategies such as service prioritization can be used to maintain customer loyalty. This research was conducted to classify customers who are estimated to have good prospects for the company so that service priorities are not mistargeted by utilizing 1683 data from store By.SIRR, a fashion store in Semarang, Indonesia contains five attributes, and customers are classified and are estimated to have promising prospects for the company. Data mining methods use the C4.5 and K-Means algorithms to classify the classification process. The research resulted in the grouping of customers into four categories: potential lover, flirting, faithful lover, and spiritual friend. From the validation test conducted using the Confusion Matrix Validation method, the classification results get an Accuracy of 97.70%.