Claim Missing Document
Check
Articles

Found 2 Documents
Search

Vibration Test Fixtures Design for Payload of Tubular Telemetry System Muksin, Muksin; Pratama, Mikhael Gilang Pribadi P.; Nugroho, Yudha Agung; Wijaya, Yusuf Giri; Ula, Nur Mufidatul; Wirawan, Adi
Jurnal ILMU DASAR Vol 23 No 1 (2022)
Publisher : Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/jid.v23i1.23894

Abstract

Vibration testing on telemetry system payload is needed to determine its resistance to vibration during operation. Vibration testing of telemetry system payloads requires a test fixture. Test fixture is used to transmit vibration from shaker to telemetry system payload. The payload of telemetry system to be tested is a tubular. The test fixture in this study was designed using SolidWorks software. The material used for manufacture of test fixture is aluminum. Aluminum material was chosen because it has good rigidity with a relatively light mass. Stiffness and mass properties affect to natural frequency value of test fixture, which must be greater than the frequency range of operating telemetry system. Data collection uses two accelerometers placed on test fixture. Sine sweep vibrations are given from 5 Hz to 2000 Hz with a constant amplitude of 1 g and a sweep rate of 1 octave/minute. The test produces three peaks that they are candidates as natural frequencies, i.e at a frequency of 1532 Hz with an amplitude of 2.898 g, a frequency of 1706 Hz with an amplitude of 6.582 g, and at a frequency of 1806 Hz with an amplitude of 6.472 g. From those three natural frequencies, the second natural frequency at 1706 Hz is the most critically because it has the largest response value.
PENGATURAN SUDUT AZIMUTH ROKET RUM UNTUK OPERASI PELUNCURAN PADA KECEPATAN ANGIN DI ATAS 10 KNOT (AZIMUTH ANGLE’S SETTING OF ROCKET RUM FOR LAUNCH OPERATION AT WIND SPEED MORE THAN 10 KNOT) Wibowo, Heri Budi; Riyadl, Ahmad; Nugroho, Yudha Agung
Indonesian Journal of Aerospace Vol. 14 No. 1 Juni (2016): Jurnal Teknologi Dirgantara
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30536/j.jtd.2016.v14.a2943

Abstract

RUM rocket is a rocket used in the payload competition among university students. The rocket is designed to bring a maximum payload of 1 kg to altitude of 600-1000 m and falls safely on a 500 m radius of the left and right rear of the center point of the launching pad of the conditions of wind speeds below 10 knots. In extreme circumstances where the wind speed is above 10 knots, the effect of speed and direction of wind to the stability of the rocket flight direction large enough to cause it to fall beyond the defined safety radius. The research aims to adjust azimuth setting of the rocket so that the fall of the rocket motor remains secure within the radius of the launch area. The study was conducted by testing a rocket RUM in extreme conditions (wind speed of 10-20 knots) with variations in shear-pin and azimuth angle. The test variables are the position of the fallen rocket motor. The results show that the wind direction and speed significantly affecting direction of rockets flight. The results show that rocket azimuth angle of 60 degrees with the direction of 90 degrees from the wind direction can make thea rocket falls on a secure area (within 500 m).