Claim Missing Document
Check
Articles

Found 4 Documents
Search

Kajian Daerah Sulit Air di Kabupaten Kulon Progo Daerah Istimewa Yogyakarta Hendrayana, Heru; Riyanto, Indra Agus; Nuha, Azmin
LaGeografia Vol 19, No 2 (2021): Februari
Publisher : UNIVERSITAS NEGERI MAKASSAR

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1406.468 KB) | DOI: 10.35580/lageografia.v19i2.15345

Abstract

Water-scarce areas can be identified from geology, meteorology, water installations, and drought conditions in the area. All of these aspects can be found in Kulon Progo Regency. The aim of this research is to identify water scarcity areas in Kulon Progo Regency and to determine priorities areas for building up some deep wells. There are four parts of the method that used in this study, there are water scarcity areas from the geological aspect interpreted based on geological, hydrogeological, and groundwater basin  maps, meteorological aspects using the water balance method and drought index, distribution water installation analyzed from PDAM data, and drought information collection from interview. Based on a study on the identification of water scarcity areas in Kulon Progo Regency with geological and hydrogeological parameters, meteorological drought, PDAM and SPAM, and Interviews, it was found that 181 hamlets that having water-scarce in 35 villages in 11 sub-districts both covering areas that can be drilled and cannot be drilled. The number of water-scarce areas selected for groundwater drilling is 104 hamlets. The number of water scarcity areas in 1st priority is 37 hamlets, there are 21 helmets for 2nd priority, and 46 hamlets for 3rd priority.
Karakteristik Hidrogeologi dan Hidrogeokimia DAS Tempuran Lereng Barat Kompleks Gunungapi Bromo-Tengger Hendrayana, Heru; Riyanto, Indra Agus; Nuha, Azmin
Majalah Geografi Indonesia Vol 38, No 1 (2024): Majalah Geografi Indonesia
Publisher : Fakultas Geografi, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/mgi.89369

Abstract

Abstrak Lereng bagian barat Gunungapi Bromo meiliki peranan penting dalam penyediaan air untuk masyarakat disekitarnya. Penggunaan air tanah cukup intensif baik domestik, pertanian, dan industri pada lereng bagian barat Gunungapi Bromo. Lerang bagian barat bagian barat Gunungapi Bromo belum pernah dilakukan kajian detail baik potensi, kualitas, dan imbuhan air tanah. Kajian tersebut di tujukan untuk mengetahui kondisi air tanah di lereng bagian barat Gunungapi Bromo supaya dapat dimanfaatkan secara berkelanjutan. Metode yang digunakan dalam penelitian ini terdiri atas pengamatan batuan, pengukuran muka air tanah, pengukuran kimia air tanah TDS, pH, EC, dan suhu, analisis geokimia berdasarkan diagram piper, diagram fingerprint, dan diagram kurlov, analisis isotop asal usul air tanah dan imbuhan air tanah. Litologi di area kajian terdiri atas endapan pasir kerikilan, endapan pasir, batupasir, konglomerat, breksi laharik, lapilli tuff, tuff, breksi, dan lava andesit. Nilai TDS, pH, Suhu, dan EC di DAS Tempuran semakin meningkat dari hulu ke hilir. Pola aliran air tanah pada DAS Tempuran secara umum mengalir dari arah selatan menuju utara. Satuan lava dan breksi andesit merupakan akuifer, lava andesit dan breksi andesit merupakan akuiklud, jatuhan piroklastik merupakan akuifer, dan tuf dan lapilli tuf merupakan akuitard. Tipe air tanah pada DAS Tempuran didominasi oleh tipe kalsium bikarbonat (diagram piper) dan kalsium magnesium bikarbonat (diagram kurlov), dan diagram fingerprint terdapat 3 sistem air tanah. Sampel air tanah di DAS Tempuran keseluruhan berasal dari air meteorik. Imbuhan air tanah di DAS termpuran berasal dari elevasi 430-805 mdpl. Daerah imbuhan air tanah terdapat di Kecamatan Pasepran, Puspo, dan Tutur. Air tanah di area kajian secara kualitas dan kuantitas tergolong sangat baik.Abstract The western slopes of Mount Bromo have an important role in providing water for the surrounding community. Groundwater use is quite intensive, both domestically, agriculturally, and industrially, on the western slopes of Mount Bromo. The western slope of Mount Bromo has never had a detailed study of its potential, quality, and groundwater recharge. The study was aimed at determining the condition of groundwater on the western slopes of Mount Bromo so that it can be used sustainably. The methods used in this research consist of rock observations, measurements of groundwater levels, measurements of groundwater chemistry (TDS, pH, EC, and temperature), geochemical analysis based on Piper diagrams, fingerprint diagrams, and Kurlov diagrams, isotope analysis of the origin of groundwater, and recharge. groundwater. The geology in the study area consists of gravelly sand deposits, sandstone, conglomerate, laharic breccia, lapilli tuff, andesite breccia, and andesitic lava. The TDS, pH, temperature, and EC values in the Tempuran watershed increase from upstream to downstream. The groundwater flow pattern in the Tempuran watershed generally flows from south to north. Units of lava and andesite breccia are aquifers; andesite lava and andesite breccia are aquicludes; pyroclastic falls are aquifers; and tuff and tuff lapilli are aquitards. The groundwater types in the Tempuran watershed are dominated by calcium bicarbonate (Piper diagram) and calcium magnesium bicarbonate (Kurlov diagram), and in the fingerprint diagram, there are 3 groundwater systems. The entire groundwater sample in the Tempuran watershed comes from meteoric water. Groundwater recharge in the purest watershed comes from an elevation of 430–805 meters above sea level. Groundwater recharge areas are in the Pasepran, Puspo, and Tutur Districts. The study area’s groundwater quality and quantity are rated as very good
Groundwater quality assessment in different volcanic rocks using water quality index in the tropical area, Indonesia Hendrayana, Heru; Riyanto, Indra Agus; Ismayuni, Novia; Nuha, Azmin; Muhammad, Azwar Satrya; Fadillah, Arif
Journal of Degraded and Mining Lands Management Vol. 11 No. 4 (2024)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2024.114.6225

Abstract

Groundwater is the main water source that is most widely used in the world, one of which is in Indonesia. One of the uses of groundwater is for consumption needs. Therefore, the groundwater used should have good water quality. For this reason, this study aimed to determine groundwater quality in Indonesia during the dry season and make recommendations for groundwater management policies. A total of 211 groundwater samples taken from springs, drilled wells, and dug wells spread across volcanic areas on the islands of Sumatra, Java, Bali, and Sulawesi were collected to test their quality in this research. The method used in this research consisted of 4 analyses: WHO threshold analysis, Piper Diagram, Water Quality Index (WQI), and statistical correlation and regression. Based on the analysis, it was discovered that 47 K+ samples, 1 Na+ sample, 5 Ca2+ samples, 1 Cl- sample, 115 HCO3- samples, 3 TDS samples, and 3 pH samples exceeded WHO standards. The results of the Piper triangle diagram analysis showed that the majority of groundwater in Indonesia falls into the Unpolluted Groundwater classification (categories D and G), and the results of the WQI analysis also showed that 98% of the groundwater in Indonesia analyzed falls into the excellent and good water categories. The results of statistical analysis of the parameters K+, Na+, Mg2+, Ca2+, SO42-, Cl-, HCO3-, TDS, and pH showed that all these parameters are strongly and positively correlated with the WQI value.
In-depth Assessment of Groundwater Quality in East Java Industrial Areas to Maintain the Sustainability of Groundwater Utilization Hendrayana, Heru; Riyanto, Indra Agus; Nuha, Azmin
Journal of Degraded and Mining Lands Management Vol. 12 No. 3 (2025)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2025.123.7649

Abstract

With its abundant groundwater potential, East Java faces a growing risk of contamination due to rapid industrial growth. This study assessed groundwater quality in four regional groundwater basins (GWB) using the Water Quality Index (WQI), water quality standard comparison, Piper diagram, and hydrogeochemical ion analysis. The WQI analysis revealed that 59% of the samples were classified as excellent and good for consumption, predominantly found in volcanic, river alluvial, and limestone hill areas. In comparison, 11% were unsuitable for consumption due to contamination, particularly near coastal, industrial, and agricultural zones. The Piper diagram showed that most groundwater samples were unpolluted, reflecting the natural interaction between groundwater and surrounding lithology. However, ion standard comparison identified samples exceeding acceptable ion levels, and ion correlation analysis confirmed contamination from industrial, agricultural, anthropogenic, and municipal wastewater activities. These findings highlight the need for targeted groundwater management, particularly in areas vulnerable to contamination.