Kurangnya tenaga ahli atau asesor pada BNN Kota Surabaya dalam melaksanakan asesmen menjadi dasar bagi peneliti untuk membuat sistem pendukung keputusan dengan menggunakan algoritma Random Forest. Sistem yang dibangun dengan memakai Rest API guna menghubungkan sistem dengan machine learning. Didapatkan hasil uji algoritma Random Forest yang menggunakan dua skenario, 100:100 mendapatkan hasil Accuracy 0.61. Sedangkan pada 70:30 mendapatkan hasil Accuracy 0.25. Dari hasil pengujian tersebut algoritma random forest memliki performa yang kurang baik pada penelitian ini, dikarenakan banyaknya jumlah dataset yang digunakan dalam melakukan prediksi. Black box testing digunakan untuk pengujian sistem dengan hasil, sistem layak unutk digunakan.