This Author published in this journals
All Journal ILKOM Jurnal Ilmiah
Akbar, Hafizal
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Algoritma K-Nearest Neighbor dengan Euclidean Distance dan Manhattan Distance untuk Klasifikasi Transportasi Bus Dinata, Rozzi Kesuma; Akbar, Hafizal; Hasdyna, Novia
ILKOM Jurnal Ilmiah Vol 12, No 2 (2020)
Publisher : Teknik Informatika Fakultas Ilmu Komputer Univeristas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v12i2.539.104-111

Abstract

K-Nearest Neighbor is a data mining algorithm that can be used to classify data. K-Nearest Neighbor works based on the closest distance. This research using the Euclidean and Manhattan distances to calculate the distance of Lhokseumawe-Medan bus transportation. Data that used in this research was obtained from the Organisasi Angkutan Darat Kota Lhokseumawe. The results of the test with k = 3 has obtained the percentage of 44.94% for Precision, 37.06% Recall, and 81.96% Accuracy for the performance of K-NN with Euclidean Distance. Whereas by using Manhattan Distance the result obtained was 45.49% for Precision, 36.39% Recall, and 84.00% Accuracy. The result shown that Manhattan Distance obtained the highest accuracy, with the difference of 2.04% higher than Euclidean Distance. It indicates that Manhattan Distance is more accurate than Euclidean Distance to classify the bus transportation.