Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Kinerja FBMC OQAM menggunakan Kode Konvolusi YUSUF, MIFTAKHUDIN; ISNAWATI, ANGGUN FITRIAN; LARASATI, SOLICHAH
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 9, No 4: Published October 2021
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v9i4.775

Abstract

ABSTRAKSistem FBMC merupakan teknologi MCM yang dapat menyediakan laju data bit yang tinggi. Modulasi digital OQAM digunakan untuk meningkatkan bit rate. Pengkodean kanal digunakan untuk mengoreksi kesalahan yang diakibatkan noise. Penilitian ini menggunakan pengkodean kanal kode konvolusi yang digunakan pada bagian pengirim dan algortima viterbi pada bagian penerima. Simulasi dilakukan pada FBMC OQAM dengan kode konvolusi dan tanpa kode konvolusi dengan perbandingan parameter BER dan kapasitas kanal terhadap SNR. Hasil penelitian menunjukan FBMC OQAM dengan kode konvolusi lebih baik daripada FBMC OQAM tanpa kode konvolusi pada SNR tinggi. Pada FBMC OQAM untuk mencapai BER 10-3 membutuhkan SNR 17 dB sedangkan pada FBMC OQAM dengan kode konvolusi membutuhkan SNR 16 dB. Peningkatan SNR dapat meningkatkan kapasitas kanal yang dihasilkan, pada SNR 0 dB menghasilkan 0,4535 bps/Hz dan SNR 20 dB menghasilkan 5,858 bps/Hz.Kata kunci: kode konvolusi, algoritma viterbi, FBMC, OQAM, BER ABSTRACTThe FBMC system is an MCM technology that can provide high bit data rates. OQAM digital modulation is used to increase the bit rate. Channel coding is used to correct errors caused by noise. This research uses convolutional code channel coding used on the sender and viterbi algorithms on the receiver. Simulations are carried out on FBMC OQAM with convolutional code and without convolutional code with a comparison of BER parameters and channel capacity to SNR. The results showed that FBMC OQAM with convolutional code was better than FBMC OQAM without convolutional code at high SNR. In FBMC OQAM to reach BER 10-3 requires SNR of 17 dB while in FBMC OQAM with convolutional code requires SNR of 16 dB. Increasing SNR can increase the resulting channel capacity, at 0 dB SNR it produces 0.4535 bps / Hz and SNR 20 dB produces 5.858 bps / Hz.Keywords: convolutional code, viterbi algorithm, FBMC, OQAM, BER
SISTEM PENERIMAAN CALON MAHASISWA BARU DENGAN MENGGUNAKAN APLIKASI LOGIKA FUZZY PADA MATLAB TOOLBOX Wulandari, Aisyah Ayu; Yusuf, Miftakhudin; Utami, Vi Bauty Riska; Permana, Yoga Adi
Majalah Ilmiah UNIKOM Vol. 18 No. 1 (2020): Majalah Ilmiah Unikom
Publisher : Universitas Komputer Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/miu.v18i1.3826

Abstract

In this era, education is a crucial thing, one of which is a tertiary institution. At a tertiary institution to be able to enter one of the tertiary institutions, there is a process in it that contains a series of activities ranging from registration, selection based on standards made and acceptance. In this process, to facilitate a process in determining the prospective new students by the needs requires a long process and consideration for that, we need a system to facilitate the selection process. Fuzzy logic is a methodology of problem-solving control systems that can be implemented on a system. The application of the new student admission system modeling using independent lane logic applications. This modeling is used as a system to solve or simplify a problem. In making a system modeling, a method like the Mamdani method is needed. Mamdani method is often known as the max-min method. In the Mamdani method, there are several stages, namely determining the fuzzy set, the implication function implications, the composition of the rules, and defuzzication. In this modeling using a fuzzy set of Scholastic Potential Test (TPS) and Academic Competency Test (TKA) variables. The magnitude of the value of the two variables is very influential on the output results that determine whether the prospective new student is accepted, considered, or rejected. From the modeling of this system, it can be concluded that by making modeling of this system can simplify and shorten the selection process of new students just by filling in the input values ​​in the modeling of the system and will get definite results. Key Words : Fuzzy, Student, Mamdani