Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Artificial Intelligence in Medical Issues

Comparative Study of Machine Learning Methods for Disease Classification Based on Natural Language Symptom Descriptions Jullev Atmadji, Ery Setiyawan; Wibowo, Adityo Permana; Faizal, Edi
International Journal of Artificial Intelligence in Medical Issues Vol. 3 No. 2 (2025): International Journal of Artificial Intelligence in Medical Issues
Publisher : Yocto Brain

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56705/ijaimi.v3i2.361

Abstract

The growing demand for remote healthcare solutions has increased the importance of efficient disease diagnosis based on textual symptom descriptions. This study explores the application of machine learning models Multinomial Naive Bayes, Random Forest, and Support Vector Machine (SVM) to classify 24 different diseases from natural language symptom inputs. Utilizing a dataset of 1,200 balanced samples and TF-IDF for feature extraction, we trained and evaluated the models using both accuracy and cross-validation metrics. Among the models, SVM achieved the highest test accuracy of 97.5% and demonstrated consistent performance across all disease categories. These findings underscore the potential of classical machine learning approaches in enhancing digital diagnostic tools, particularly for early screening in telemedicine applications. Future work could extend this study by integrating deep learning architectures and multilingual capabilities to accommodate broader and more diverse healthcare scenarios.