Claim Missing Document
Check
Articles

Found 4 Documents
Search

Investigation of Flap Dimensional Parameters to Improve Hydrodynamic Performance of Oscillating Wave Surge Converter Device Anggara, Rizki Aldi; Julian, James; Wahyuni, Fitri; Purba, Riki Hendra; Toding Bunga, Nely
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 7 Number 1 (2025)
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v7i1.7911

Abstract

Renewable energy transition is a strategic step in overcoming environmental damage due to fossil fuel exploitation. Ocean wave energy comes with its popularity, considering its advantages in supplying energy continuously and having high energy density. Therefore, technology that can extract other wave energy effectively and efficiently is needed. This study focuses on identification flap geometry to improve the oscillating wave surge converter (OWSC) hydrodynamic performance. Through a numerical approach, the Boundary Element Method (BEM) is applied in three-dimensional flap modeling to accommodate testing the characteristics and performance of the OWSC device. This study identified five different samples: geometry 1, geometry 2, geometry 3, geometry 4, and geometry 5. The results show that the second geometry variation is the most optimal flap dimension parameter. The best proportion is found in the dimensional characteristics parallel to the elevation of the ocean waves to maximize the output torque. Overall, the second geometry performs satisfactorily with an average maximum power achievement of 41.52 Watts at a wave period of T = 1.5s. In addition, the OWSC device with this variation can work at an expansive wave period interval with a maximum CWR efficiency achievement of up to 52.14%.
The Effect of Hydrostatic Pressure on the Performance of Oscillating Wave Surge Converter Prabowo, Anton Dwi; Julian, James; Wahyuni, Fitri; Purba, Riki Hendra; Toding Bunga, Nely
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 7 Number 1 (2025)
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v7i1.7912

Abstract

The latest energy demand increasingly drives innovation in ocean wave energy technology, including the Oscillating Wave Surge Converter (OWSC). This consider analyzes the impact of water profundity varieties on the execution of OWSCs put on the seabed. The study was conducted numerically using the Boundary Element Method by testing four variations of air depth at wave periods between 1.2 and 2.8 seconds and wave amplitudes of 0.1 meters. The results show that the optimal depth, equivalent to the flap height (D2), produces the highest maximum displacement due to the balance between hydrostatic pressure and wave energy the flap receives. Conversely, depths that are too shallow (D1) or too deep (D4) result in smaller displacements due to the instability of the movement in shallow air and the attenuation of wave energy in deep air. In addition, more extended wave periods tend to decrease the changing cycle frequency but increase the symmetry of the flap movement at a certain depth.
Utilization of Single and Double Orifice Plates in Pipe Inner Flow Structure by Computational Method Naufal, Ridwan Daris; Julian, James; Wahyuni, Fitri; Purba, Riki Hendra; Toding Bunga, Nely
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 7 Number 1 (2025)
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v7i1.7913

Abstract

The orifice plate is a device that disrupts the flow in the pipe. The disturbed flow results in the formation of flow structures. The flow structure formed can be utilized for several applications such as multi-fluid mixing and microbubble generator. Using orifice plates to utilize the flow structure results in more significant pressure loss. This study aims to identify the characteristics of the flow structure generated by single and double orifice plates with 1D and 2D spacing at various Reynolds numbers, namely Re = 1×104, 5×104, 1×105, and 5×105, as a basis for application in these various applications. The results show that single and double orifice plates can produce flow structure phenomena such as recirculation and vortex regions. The recirculation area is formed smaller in the double orifice plate due to the flow that is separated faster to converge back to the pipe wall but broader so that the flow of the orifice plate is narrower. Increasing the applied Reynold's number causes the separated flow to reconnect to the pipe wall faster, resulting in a smaller recirculation area. Double orifice plates are more suitable for applications that require a certain degree of mixing or pressure distribution, but with a consequent more significant pressure loss. Meanwhile, single plates can be used for simple needs with little pressure loss.
The Analysis of Banana Slices Machine Frame Using Computational Method Akmal, Reza Najmi; Julian, James; Wahyuni, Fitri; Purba, Riki Hendra; Toding Bunga, Nely
Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi Volume 7 Number 1 (2025)
Publisher : Fakultas Teknik Universitas Pancasila

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35814/asiimetrik.v7i1.7914

Abstract

The culinary industry, especially banana chip processing, dramatically supports the economy of micro and small enterprises (MSMEs) in Indonesia. However, the traditional process is time-consuming, especially at the cutting stage. The banana-slicing machine is designed to speed up this process with consistent and efficient cuts. This study analyzes the performance of the banana-slicing machine frame by testing variations in loading (20 N to 200 N) and frame materials, namely Low Alloy Steel, Structural Steel, Stainless Steel, Aluminum Alloy, and Cast Iron, to determine the optimal material. The results showed that Low Alloy Steel is the best material because it has the lowest total deformation, equivalent stress, and strain energy, reflecting high stiffness and load efficiency. With an elastic modulus of 212.5 GPa and an economical price ($1.3–1.5/kg), this material offers the best balance in terms of technical and economics. Structural steel also performed well but was slightly lower than low alloy steel. In contrast, Aluminum Alloy has the highest deformation and strain energy, making it less suitable for this application. Overall, Low Alloy Steel is an ideal choice to improve the efficiency and reliability of the banana-slicing machine.