Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prototipe Sistem Monitoring Konsumsi Energi Listrik serta Estimasi Biaya pada Peralatan Rumah Tangga Berbasis Internet Of Things Nursamsi Adiwiranto, Mohamad; Budi Waluyo, Catur
ELECTRON Jurnal Ilmiah Teknik Elektro Vol 2 No 2: Jurnal Electron, November 2021
Publisher : Jurusan Teknik Elektro Fakultas Teknik Universitas Bangka Belitung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33019/electron.v2i2.2

Abstract

Electricity has become a basic necessity for everyone. Household appliances using electricity have become a basic human need today. Monitoring equipment is needed to know how much power, energy, used and the estimated cost to be paid. The tool designed for this monitoring system uses a PZEM-004T sensor, the platform Ubidots and NodeMCU. The PZEM-004T sensor functions to measure the voltage, current, power, power factor, and energy contained in electrical loads. And NodeMCU is needed as a microcontroller. The results can be displayed on the platform Ubidots and the 16x2 LCD used. The test results obtained through measurements using the PZEM-004T sensor for designing a prototype energy monitoring system have a voltage accuracy value of 98.94%, 99.18% current, 98.87% power, 98.44% power factor, and 97 electrical energy consumption. , 89%. In household electrical appliances (led lights, televisions, fans, ricecookers, and laptop chargers) the results of electrical energy consumption in a month are 43.56 kWh and the estimated cost is Rp 114.781.52.
Implementasi Artificial Intelligence DanInternet Of Things Untuk Mendeteksi Penggunaan Helm Proyek Syabilla Rosyada, Bilqis; Fitriyani, Yunita; Agung Setyawan, Thomas; Wasito, Endro; Budi Waluyo, Catur; Ratna Kusumatuti, Dianita; Helmy, Helmy
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 12 No 4: Agustus 2025
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.124

Abstract

BPJS Ketenagakerjaan mencatat bahwa jumlah kecelakaan kerja di Indonesia meningkat dari 221.740 kasus pada tahun 2020 menjadi 234.370 kasus pada tahun 2021, dan terus meningkat hingga mencapai 256.334 kasus pada November 2022. Berdasarkan data dari Kementerian Ketenagakerjaan Indonesia, pada tahun 2020, 57,5% dari total 126,51 juta pekerja di Indonesia memiliki tingkat pendidikan rendah, yang berkontribusi pada rendahnya kesadaran akan pentingnya budaya Keselamatan dan Kesehatan Kerja (K3) serta penggunaan Alat Pelindung Diri (APD) yang sesuai standar. Pemantauan penggunaan APD, termasuk helm proyek di area konstruksi, masih dilakukan secara manual, yang dirasa kurang efisien. Penelitian ini bertujuan untuk mengembangkan alat berbasis Artificial Intelligence (AI) dan Internet of Things (IoT) yang dapat memantau penggunaan helm proyek secara real-time dengan akurasi tinggi dan dapat dipantau melalui dashboard. Alat ini terbukti lebih efektif dalam meminimalisir kecelakaan kerja, dengan rata-rata akurasi deteksi sebesar 84,65% untuk pekerja yang memakai helm dan 71,5% untuk yang tidak memakai helm. Penelitian ini menggunakan metode Agile yang melibatkan observasi, identifikasi kebutuhan, perancangan, pembuatan sistem, implementasi, dan pengujian. Hasil penelitian ini menunjukkan bahwa sistem yang dikembangkan mampu memberikan kemudahan bagi petugas K3 dalam melakukan pengawasan, sehingga dapat mengurangi risiko kecelakaan kerja.   Abstract The Workers Social Security Agency (BPJS Ketenagakerjaan) recorded that the number of work accidents in Indonesia increased from 221,740 cases in 2020 to 234,370 cases in 2021, and continued to rise, reaching 256,334 cases by November 2022. According to data from the Indonesian Ministry of Manpower, in 2020, 57.5% of the total 126.51 million workers in Indonesia had a low level of education, which contributed to a lack of awareness of the importance of Occupational Safety and Health (OSH) culture and the use of Personal Protective Equipment (PPE) that meets standards. The monitoring of PPE usage, including project helmets in construction areas, is still conducted manually, which is considered inefficient. This study aims to develop a tool based on Artificial Intelligence (AI) and the Internet of Things (IoT) that can monitor the use of project helmets in real-time with high accuracy and can be monitored through a dashboard. This tool has proven to be more effective in minimizing work accidents, with an average detection accuracy of 84.65% for workers wearing helmets and 71.5% for those not wearing helmets. The study utilized the Agile method, involving observation, needs identification, system design, system development, implementation, and testing. The results of this study show that the developed system can provide ease for OSH officers in conducting supervision, thereby reducing the risk of work accidents.