Claim Missing Document
Check
Articles

Found 4 Documents
Search

THE USE OF GOOGLE SITES FOR TEACHERS AND ADMINISTRATIVE PERSONNEL AS AN EFFORT FOR STUDENT DATA MANAGEMENT EFFICIENCY AT SMPN 19 SURABAYA & SMPN 52 SURABAYA Ghani, Mohammad; Fakhruzzaman, Muhammad Noor; Maryamah; Susanto, Putri Dwidhamayanti; Basuki, Lintang Sabrang Kinasih
Jurnal Layanan Masyarakat (Journal of Public Services) Vol. 8 No. 4 (2024): JURNAL LAYANAN MASYARAKAT
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jlm.v8i4.2024.486-500

Abstract

Utilization of student data can help teachers and school administration staff for management efficiency. This community service program in the form of Google Sites training seeks to help improve the skills and knowledge of teachers and administration staff. This community service program is inseparable from the SDG's elements as the basic foundation for program implementation, namely: Quality Education (4th indicator), and Industry, Innovation, and Infrastructure (9th indicator). This aims to increase the skills and knowledge of teachers and administration staff and ultimately encourage innovation in creating student data management that can support school infrastructure. The method used as an effort to improve skills is by providing training as well as pre-tests and post-tests for participants. Based on statistical tests, there is a significant difference between the Pre-Test and Post-Test values, namely with an average value of 7.5 (Pre-Test) and 8.2 (Post-Test). Based on the Wilcoxon sign rank test, it also shows that there is a difference between the Pre-Test and Post-Test values ​​with a Wcount value <Wtable.
Space-Time and Motion to Advection-Diffusion Equation Ghani, Mohammad
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol. 3 No. 1 (2021)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v3i1.19679

Abstract

AbstractWe are concerned with the study the differential equation problem of space-time and motion for the case of advection-diffusion equation. We derive the advection-diffusion equation from the conservation of mass, where this can be represented by the substance flow in and flow out through the medium. In this case, the concentration of substance and rate of flow of substance in a medium are smooth functions which is useful to generate advection-diffusion equation. A special case of the advection-diffusion equation and numerical results are also given in this paper. We use explicit and implicit finite differences method for numerical results implemented in MATLAB.Keywords: advection-diffusion; space-time; motion; finite difference method. AbstrakKami tertarik untuk mempelajari masalah persamaan diferensial ruang-waktu, dan gerak untuk kasus persamaan adveksi-difusi. Kita menurunkan persamaan adveksi-difusi dari kekekalan massa, di mana hal ini dapat diwakili oleh aliran zat yang masuk dan keluar melalui media. Dalam hal ini konsentrasi zat dan laju aliran zat dalam suatu medium merupakan fungsi halus yang berguna untuk menghasilkan persamaan adveksi-difusi. Sebuah kasus khusus persamaan adveksi-difusi dan hasil numerik juga diberikan dalam makalah ini. Kami menggunakan metode beda hingga explisit dan implisit untuk hasil numerik yang diimplementasikan dalam MATLAB.Kata kunci: adveksi-difusi; ruang-waktu; gerak; metode beda hingga.
Numerical Results of Crank-Nicolson and Implicit Schemes to Laplace Equation with Uniform and Non-Uniform Grids Ghani, Mohammad
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol. 3 No. 2 (2021)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v3i2.20917

Abstract

AbstractIn this paper, we investigate the numerical results between Implicit and Crank-Nicolson method for Laplace equation. Based on the numerical results obtained, we get the conclusion that the absolute error of Crank-Nicolson method is smaller than the absolute error of Implicit method for uniform and non-uniform grids which both refer to the analytical solution of Laplace equation obtained by separable variable method.Keywords: Crank-Nicolson; Implicit; Laplace equation; separable variable method; uniform and non-uniform grids. AbstrakDalam makalah ini, kami menyelidiki hasil numerik antara etode Implisit dan Crank-Nicolson untuk persamaan Laplace. Berdasarkan hasil numerik yang diperoleh, kita mendapatkan kesimpulan bahwa kesalahan absolut metode Crank-Nicolson lebih kecil daripada kesalahan absolut metode Implisit untuk grid seragam dan tak-seragam yang keduanya mengacu pada solusi analitik persamaan Laplace yang diperoleh dengan metode separable.Kata kunci: Crank-Nicolson; Implisit; persamaan Laplace; metode variable terpisah; grid seragam dan tak-seragam.
Laminar Viscous Fluid Flow with Micro-rotation Capabilities through Cylindrical Surface Norasia, Yolanda; Tafrikan, Mohamad; Ghani, Mohammad
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 6, No 4 (2022): October
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v6i4.9158

Abstract

Viscous fluid can micro-rotate due to collisions between particles that affect viscous fluid's velocity and temperature.This study aims to determine the effect of viscosity parameters, micro-rotation materials, and heat sources on fluid velocity and temperature. The model of the laminar flow equation for viscous fluid in this study uses the laws of physics, namely, the law of conservation of mass, Newton II, and Thermodynamics I. The formed dimensional equations are converted into non-dimensional equations by using non-dimensional variables. Then, the non-dimensional equations are converted into similarity equations using stream function and similarity variables. The formed similarity equation was solved numerically by using the Gauss-Seidel method. The results of this study indicate that the velocity and temperature of the viscous fluid flow can be influenced by the parameters of viscosity, micro-rotation material, and heat source. The presence of collisions between particles causes heat to cause an increase in the variance of viscosity parameters, micro-rotation materials, and heat sources. Therefore, the viscous fluid's velocity decreases and its temperature increases.