Claim Missing Document
Check
Articles

Found 3 Documents
Search

Enhanced Trajectory Tracking of 3D Overhead Crane Using Adaptive Sliding-Mode Control and Particle Swarm Optimization Alyazidi, Nezar M.; Hassanine, Abdalrahman M.; Mahmoud, Magdi S.; Ma'arif, Alfian
Journal of Robotics and Control (JRC) Vol 5, No 1 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i1.18746

Abstract

Cranes hold a prominent position as one of the most extensively employed systems across global industries. Given their critical role in various sectors, a comprehensive examination was necessary to enhance their operational efficiency, performance, and facilitate the control of transporting loads. Furthermore, due to the complexities involved in disassembling and reinstalling cranes, as well as the challenges associated with precisely determining system parameters, it became essential to implement adaptive control methods capable of efficiently managing the system with minimal resource requirements. This work proposes a trajectory tracking control using adaptive sliding-mode control (SMC) with particle swarm optimization (PSO) to control the position and rope length of a 3D overhead crane system with unknown parameters. The PSO is mainly used to identify the model and estimate the uncertain parameters. Then, sliding-mode control is adapted using the PSO algorithm to minimize the tracking error and ensure robustness against model uncertainties. A model of the systems is derived assuming changing rope length. The model is nonlinear of second order with five states, three actuated states: position x and y, and rope length l, and two unactuated states, which are the rope angles θx and θy. The system has uncertain parameters, which are the system’s masses Mx, My and Mz, and viscous damping coefficients Dx, Dy and Dy. A simulation study is established to illustrate the influence and robustness of the developed controller and it can enhance the tracking trajectory under different scenarios to test the scheme.
Current trend in control of artificial intelligence for health robotic manipulator Suwarno, Iswanto; Cakan, Abdullah; Raharja, Nia Maharani; Baballe, Muhammad Ahmad; Mahmoud, Magdi S.
Journal of Soft Computing Exploration Vol. 4 No. 1 (2023): March 2023
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v4i1.96

Abstract

The increasing utilization of artificial intelligence and robots in various services in healthcare makes robots as preferred intelligent agent model. Robotic evolution produces the optimal robotic innovation in the robotic system or its subsystems, morphology, kinematics, and control. An intelligent algorithm is programmed into the control of the robotic manipulator. This paper aims to identify the control of artificial intelligence and identify comparisons of artificial intelligence algorithms control for healthcare robotic manipulators. This study uses a systematic literature review using the Preferred Reporting Items for Systematic Review (PRISMA). The potential for further articles is explored related to the theme of the research carried out. The conclusion obtained many studies have been carried out to optimize the work and tasks of the robotic arm manipulator, specifically developing various types of manipulator control (algorithms) combined with neural networks to get the right and appropriate algorithm.
Control of teleoperation systems in the presence of cyber attacks: A survey Hamdan, Mutaz M.; Mahmoud, Magdi S.
IAES International Journal of Robotics and Automation (IJRA) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v10i3.pp235-260

Abstract

The teleoperation system is often composed of a human operator, a local master manipulator, and a remote slave manipulator that are connected by a communication network. This paper proposes a survey on feedback control design for the bilateral teleoperation systems (BTSs) in nominal situations and in the presence of cyber-attacks. The main idea of the presented methods is to achieve the stability of a delayed bilateral teleoperation system in the presence of several kinds of cyber attacks. In this paper, a comprehensive survey on control systems for BTSs under cyber-attacks is discussed. Finally, we discuss the current and future problems in this field.