Ghazal, Mohammed Talal
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Simulation of autonomous navigation of turtlebot robot system based on robot operating system Ghazal, Mohammed Talal; Al-Ghadhanfari, Murtadha; Waisi, Najwan Zuhair
Bulletin of Electrical Engineering and Informatics Vol 13, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i2.6419

Abstract

Complex system science has recently shifted its focus to include modeling, simulation, and behavior control. An effective simulation software built on robot operating system (ROS) is used in robotics development to facilitate the smooth transition between the simulation environment and the hardware testing of control behavior. In this paper, we demonstrate how the simultaneous localization and mapping (SLAM) algorithm can be used to allow a robot to navigate autonomously. The Gazebo is used to simulate the robot, and Rviz is used to visualize the simulated data. The G-mapping package is used to create maps using collected data from a variety of sensors, including laser and odometry. To test and implement autonomous navigation, a Turtlebot was used in a Gazebo-generated simulated environment. In our opinion, additional study on ROS using these important tools might lead to a greater adoption of robotics tests performed, further evaluation automation, and efficient robotic systems.
Development of a dynamic intelligent recognition system for a real-time tracking robot Salih, Thair Ali; Ghazal, Mohammed Talal; Mohammed, Zaid Ghanim
IAES International Journal of Robotics and Automation (IJRA) Vol 10, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v10i3.pp161-169

Abstract

Nowadays, the development of computer vision technology help to overcome track and identify humans within a location in the complex environment through mobile robots, which gives the motivation to presents a vision-based approach to a mobile security robot. The proposed system utilizes a wireless camera to detect the objects in the field of robot view. Principle component analysis (PCA) algorithm and filters are used to implement and demonstrate the process of the images. This gives the designed system the ability to recognize objects independently from current light conditions. Frame tracking in the images uses an attention system to get an estimate of the position of a person. This estimate helps the applied camera to identify objects with changing background lighting conditions such as a fire inside a building. By using this estimate, the applied camera could identify objects with changing background lighting conditions such as a fire inside premises. The system has been tested using the MATLAB environment, and the empirical performance explains the efficiency and strongness of the suggested device.