Al-Ghadhanfari, Murtadha
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Simulation of autonomous navigation of turtlebot robot system based on robot operating system Ghazal, Mohammed Talal; Al-Ghadhanfari, Murtadha; Waisi, Najwan Zuhair
Bulletin of Electrical Engineering and Informatics Vol 13, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i2.6419

Abstract

Complex system science has recently shifted its focus to include modeling, simulation, and behavior control. An effective simulation software built on robot operating system (ROS) is used in robotics development to facilitate the smooth transition between the simulation environment and the hardware testing of control behavior. In this paper, we demonstrate how the simultaneous localization and mapping (SLAM) algorithm can be used to allow a robot to navigate autonomously. The Gazebo is used to simulate the robot, and Rviz is used to visualize the simulated data. The G-mapping package is used to create maps using collected data from a variety of sensors, including laser and odometry. To test and implement autonomous navigation, a Turtlebot was used in a Gazebo-generated simulated environment. In our opinion, additional study on ROS using these important tools might lead to a greater adoption of robotics tests performed, further evaluation automation, and efficient robotic systems.
Classification of breast cancer using a precise deep learning model architecture Ghazal, Mohammed; Al-Ghadhanfari, Murtadha; Fadhil, Fajer
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 14, No 3: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v14i3.pp933-940

Abstract

Breast cancer is an important topic in medical image analysis because it is a high-risk disease and the leading cause of death in women. Early detection of breast cancer improves treatment outcomes, which can be achieved by identifying it using mammography images. Computer-aided diagnostic systems detect and classify medical images of breast lesions, allowing radiologists to make accurate diagnoses. Deep learning algorithms improved the performance of these diagnoses systems. We utilized efficient deep learning approaches to propose a system that can detect breast cancer in mammograms. The proposed approach adopted relies on two main elements: improving image contrast to enhance marginal information and extracting discriminatory features sufficient to improve overall classification quality, these improvements achieved based on a new model from scratch to focus on enhancing the accuracy and reliability of breast cancer detection. The model trained on the digital database for screening mammography (DDSM) dataset and compared with different convolutional neural network (CNN) models, namely EfficientNetB1, EfficientNetB5, ResNet-50, and ResNet101. Moreover, to enhance the feature selection process, we have integrated adam optimizer in our methodology. In evaluation, the proposed method achieved 96.5% accuracy across the dataset. These results show the effectiveness of this method in identifying breast cancer through images.