Claim Missing Document
Check
Articles

Found 6 Documents
Search

Hubungan Kompensasi Dan Kepuasan Kerja Dengan Kinerja Pegawai Pada Dinas Lingkungan Hidup Kota Tangerang Permana, Sandy Eka; Suhaya, Suhaya; Sabur, Ambuy; Mulyadi, Edi
Perspektif : Jurnal Ilmu Administrasi Vol 3 No 2 (2021)
Publisher : UNIVERSITAS ISLAM SYEKH - YUSUF TANGERANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33592/perspektif.v3i2.1487

Abstract

This study departs from the problem of employee performance, namely the low level of employee discipline. The purpose of the study was to analyze the relationship between compensation and job satisfaction with employee performance. The research method used is a quantitative method using a questionnaire as a tool for data collection. The samples taken were DLH Tangerang City employees as many as 121 employees from a population of 172 employees. Data analysis used correlation analysis and regression analysis. Based on the results of the analysis conducted, this study resulted in three conclusions: 1) There is a positive and significant relationship between compensation and employee performance, with a correlation coefficient of r = 0.216 > rtable (rtable = 0.195 at = 5%). 2) There is a positive and significant relationship between Job Satisfaction and Employee Performance, with a correlation coefficient r = 0.324 > rtable (rtable = 0.195 at = 5%). 3) There is a positive and significant relationship between Compensation and Job Satisfaction together with Employee Performance, with a correlation coefficient of R = 0.351 > Rtable (Rtable = 0.195 at α = 5%). Keywords: Compensation, Job Satisfaction, Employee Performance
Implementasi Algoritma Naïve Bayes untuk Prediksi Penerima Bantuan Sosial di Desa Cigayam Hoeriah, Dede; Nurhakim, Bani; Permana, Sandy Eka; Prihartono, Willy; Dwilestari, Gifthera
TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akuntansi Vol 4 No 1 (2024): TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akuntansi
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/tamika.Vol4No1.pp52-58

Abstract

Social assistance is one of the government's programmes aimed at improving the lives of people especially for those who are economically disadvantaged. However, there are several reasons why some people are unable to access social assistance. In the case of this study, the authors used the Naïve Bayes algorithm with the KDD (Knowledge Discovery Database) method to predict the population in obtaining social assistance. The data was taken from the population data of Cigayam Village and the social welfare recipient data in the village ofCigayam with the results showing high accuracy in this study, for the true or false outcome of 1047 data and 53 data with the precision grade of 95.18%, 81.17%, for the real outcome, and 28.38% for the wrong outcome. So with the ROC curve shows the accuracy of the spinning visually, with an AUC of 0.868% for naïve bayes using the ROK curve of 0.90.1.
PEMANFAATAN ALGORITMA APRIORI DALAM MENGUNGKAP POLA TRANSAKSI UNTUK DESAIN TATA LETAK PRODUK Fajri, ibnu; Faqih, Ahmad; Permana, Sandy Eka
Jurnal Informatika dan Teknik Elektro Terapan Vol 13, No 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6181

Abstract

Penelitian ini bertujuan mengoptimalkan tata letak produk di toko yono snack melalui analisis pola pembelian menggunakan Algoritma Apriori. Metode penelitian dilakukan dengan mengeksplorasi data transaksi penjualan untuk mengidentifikasi hubungan asosiasi antar barang. Dengan menerapkan parameter minimum support 30% dan minimum confidence 50%, penelitian berhasil menghasilkan enam aturan asosiatif. Hasil penelitian mengungkapkan empat kategori produk utama yang direkomendasikan untuk diposisikan berdekatan, mencakup: (1) wafer, (2) kopi, (3) minuman serbuk, dan (4) snack. Pendekatan ini diharapkan dapat meningkatkan efisiensi belanja pelanggan dan optimalisasi tata letak produk di ruang ritel modern. Kontribusi utama penelitian ini adalah menghadirkan metode sistematis untuk merancang tata letak produk berbasis analisis data transaksi, yang dapat menjadi referensi bagi manajemen ritel dalam meningkatkan pengalaman belanja konsumen.
Prediction of Stunted Toddlers Using K-Nearest Neighbor Algorithm in Kamarang Lebak Village Amida, Anggi Fitria; Permana, Sandy Eka; Pratama, Denni; Anam, Khaerul; Rinaldi, Ade Rizki
Bahasa Indonesia Vol 15 No 02 (2023): Instal : Jurnal Komputer Periode (Juli-Desember)
Publisher : Cattleya Darmaya Fortuna

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54209/jurnalkomputer.v15i02.156

Abstract

Stunting refers to a condition where toddlers (under five years old) experience growth failure, resulting in height and weight below the average for their age. The focus of this research is on the situation in Kamarang Lebak Village, where the number of stunted toddlers is notably significant. However, there has yet to be a study accurately predicting the factors differentiating stunted toddlers from those growing normally, thus lacking clarity on how accurate such predictions are in identifying toddlers vulnerable to stunting. The data collection method employed in this study involves observational techniques, with researchers visiting the Kamarang health center in Greged Sub-District, Cirebon Regency, to gather necessary information and data. This research implements the K-Nearest Neighbor Algorithm method to predict stunted toddlers and is supported by the Knowledge Discovery in Database approach, involving steps such as data selection, collection, transformation, data mining processes, and evaluation. It is anticipated that this research will serve as a foundation for public health practitioners, especially community health workers and village midwives in the area, to plan more focused and efficient intervention programs addressing toddler stunting issues. The results of this study indicate that the K-nearest neighbor algorithm demonstrates good performance with an accuracy of 97.16%. Stunting precision reaches 95.60%, normal precision reaches 98.82%, stunting recall reaches 98.86%, and normal recall reaches 95.45%.
Implementasi Algoritma Naïve Bayes untuk Prediksi Penerima Bantuan Sosial di Desa Cigayam Hoeriah, Dede; Nurhakim, Bani; Permana, Sandy Eka; Prihartono, Willy; Dwilestari, Gifthera
TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akuntansi Vol 4 No 1 (2024): TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akuntansi
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/tamika.Vol4No1.pp52-58

Abstract

Social assistance is one of the government's programmes aimed at improving the lives of people especially for those who are economically disadvantaged. However, there are several reasons why some people are unable to access social assistance. In the case of this study, the authors used the Naïve Bayes algorithm with the KDD (Knowledge Discovery Database) method to predict the population in obtaining social assistance. The data was taken from the population data of Cigayam Village and the social welfare recipient data in the village ofCigayam with the results showing high accuracy in this study, for the true or false outcome of 1047 data and 53 data with the precision grade of 95.18%, 81.17%, for the real outcome, and 28.38% for the wrong outcome. So with the ROC curve shows the accuracy of the spinning visually, with an AUC of 0.868% for naïve bayes using the ROK curve of 0.90.1.
PEMANFAATAN ALGORITMA APRIORI DALAM MENGUNGKAP POLA TRANSAKSI UNTUK DESAIN TATA LETAK PRODUK Fajri, ibnu; Faqih, Ahmad; Permana, Sandy Eka
Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6181

Abstract

Penelitian ini bertujuan mengoptimalkan tata letak produk di toko yono snack melalui analisis pola pembelian menggunakan Algoritma Apriori. Metode penelitian dilakukan dengan mengeksplorasi data transaksi penjualan untuk mengidentifikasi hubungan asosiasi antar barang. Dengan menerapkan parameter minimum support 30% dan minimum confidence 50%, penelitian berhasil menghasilkan enam aturan asosiatif. Hasil penelitian mengungkapkan empat kategori produk utama yang direkomendasikan untuk diposisikan berdekatan, mencakup: (1) wafer, (2) kopi, (3) minuman serbuk, dan (4) snack. Pendekatan ini diharapkan dapat meningkatkan efisiensi belanja pelanggan dan optimalisasi tata letak produk di ruang ritel modern. Kontribusi utama penelitian ini adalah menghadirkan metode sistematis untuk merancang tata letak produk berbasis analisis data transaksi, yang dapat menjadi referensi bagi manajemen ritel dalam meningkatkan pengalaman belanja konsumen.