Claim Missing Document
Check
Articles

Found 2 Documents
Search

Design and fabrication of chitin-derived electrodes with optimization of temperature carbonization for energy storage in supercapacitors Farma, Rakhmawati; Meisya, Meisya; Apriyani, Irma; Awitdrus, Awitdrus; Taer, Erman
Science, Technology, and Communication Journal Vol. 5 No. 3 (2025): SINTECHCOM Journal (June 2025)
Publisher : Lembaga Studi Pendidikan dan Rekayasa Alam Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59190/stc.v5i3.310

Abstract

Supercapacitors have become one of the potential solutions for efficient energy storage, and the development of carbon-based electrodes from biomass has received increasing attention due to their sustainability. This study aims to produce carbon electrodes from crab shells (CS) as biomass materials by optimizing the carbonization process with temperature variations of 600°C, 700°C, and 800°C for supercapacitor cell applications. Material characterization shows that the carbonization temperature of 700°C produces carbon electrodes with optimal semicrystalline structures and mesopore dominance, which supports efficient ion diffusion. The CS-700 carbon electrode showed the highest specific capacitance of 118.84 F/g in cyclic voltammetry tests with 1 M H2SO4 electrolyte. These results indicate that carbonization at 700°C provides the best electrochemical performance, making it the optimal condition for developing efficient and environmentally friendly mud crab shell biomass-based electrodes for supercapacitor cell applications.
Developing Carbon Nanofibers from Gnetum Gnemon Linn Pericarp Using Dual Activators KOH And Melamine as Innovative Electrode Materials for Supercapacitors Farma, Rakhmawati; Putri, Hardini Chania; Apriyani, Irma; Azwat, Luqyana Adha; Awitdrus, Awitdrus; Deraman, Mohamad; Rini, Ari Sulistyo; Setiadi, Rahmondia Nanda; Taer, Erman
Journal of Engineering and Technological Sciences Vol. 57 No. 6 (2025): Vol. 57 No. 6 (2025): December
Publisher : Directorate for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2025.57.6.2

Abstract

Synthesis of carbon nanofibers from Gnetum gnemon Linn (GP) biomass with dual activators, KOH and melamine, offers a potential approach for high-performance supercapacitor electrodes. This study evaluated the preparation of GP-based carbon nanofibers through single and double activation, with varying melamine masses of 0.1, 0.3, and 0.5 g at 0.3 M KOH. The pyrolysis (integrated carbonization and physical activation) occurred at 600°C in N₂ and 800°C in CO₂ atmospheres. The material was activated using 0.3 g of melamine in 0.3 M KOH to produce abundant and highly amorphous nanofiber structures. These characteristics contributed to the high specific capacitance of 400 F/g at a scan rate of 1 mV/s and an energy density of 17 Wh/kg at a power of 465 W/kg. These results demonstrated the synergistic effect of melamine and KOH in increasing the active surface area and structural conductivity. This finding confirms the potential of GP biomass that has not been optimally utilized as a sustainable precursor for energy storage applications, especially supercapacitors.