Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimisation and Management of Virtual Power Plants Energy Mix Trading Model Ullah, Zahid; Mirjat, Nayyar Hussain; Baseer, Muhammad
International Journal of Renewable Energy Development Vol 11, No 1 (2022): February 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.39295

Abstract

. In this study, a robust optimisation method (ROM) is proposed with aim to achieve optimal scheduling of virtual power plants (VPPs) in the day-ahead electricity markets where electricity prices are highly uncertain. Our VPP is a collection of various distributed energy resources (DERs), flexible loads, and energy storage systems that are coordinated and operated as a single entity. In this study, an offer and bid-based energy trading mechanism is proposed where participating members in the VPP setting can sell or buy to/from the day-ahead electricity market to maximise social welfare (SW). SW is defined as the maximisation of end-users benefits and minimisation of energy costs. The optimisation problem is solved as a mixed-integer linear programming model taking the informed decisions at various levels of uncertainty of the market prices. The benefits of the proposed approach are consistency in solution accuracy and traceability due to less computational burden and this would be beneficial for the VPP operators. The robustness of the proposed mathematical model and method is confirmed in a case study approach using a distribution system with 18-buses. Simulation results illustrate that in the highest robustness scenario, profit is reduced marginally, however, the VPP showed robustness towards the day-ahead market (DAM) price uncertainty
Design and Optimization of an Energy Storage System for Off-Grid Rural Communities Soomro, Zain Ul Abddin; Khatri, Shoaib Ahmed; Mirjat, Nayyar Hussain; Memon, Abdul Hannan; Uqaili, Muhammad Aslam; Kumar, Laveet
International Journal of Renewable Energy Development Accepted Articles
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.61191

Abstract

Access to reliable electricity remains a critical challenge in many rural areas of developing countries, particularly in Pakistan, where traditional grid expansion is often economically unfeasible. This research aims to design and optimize an off-grid microgrid system powered by Renewable Energy (RE) sources, specifically solar energy, integrated with an efficient Energy Storage System (ESS).  The proposed off-grid system features a generation RE source with an ESS for continuous power supply during periods of low solar irradiance, poor weather conditions, and nighttime, which includes Lithium-Ion Battery (LIB), Sodium-Ion Battery (NIB), and Hydrogen Storage System (HSS). HOMER Pro software is used to simulate and optimize a system sized 150 kW, assessing various energy storage technologies, including LIB, and NIB, with HSS, to determine the most suitable option for rural electrification. Key results demonstrate that the integration of renewable sources with ESSs significantly enhances reliability, providing a consistent energy supply while reducing dependence on fossil fuels. The techno-economic analysis reveals that the most cost-effective configuration includes solar Photovoltaic (PV), NIB, and minimal use of a HSS for backup power, resulting in a Net Present Cost (NPC) of 1.53 $M and the Levelized Cost of Energy (LCOE) of 0.0649 $/kWh. The proposed system shows the capability to maintain power reliability with no unmet load.