Jabire, Adamu Halilu
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Dielectric Characterization of Breast Cancer Cells using Split-Rectangular Ring Resonator Sensor Jabire, Adamu Halilu; Saminu, Sani; Adamu, Muhammed Jajere; Mohammed, Abubakar Saddiq; Aminu, Sha'awanatu; Sadiq, Abubakar Muhammad
Buletin Ilmiah Sarjana Teknik Elektro Vol. 7 No. 1 (2025): March
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/biste.v7i1.12680

Abstract

Exploring a universal method to enhance the performance of metamaterials by quantifying the impact of gap capacitance is an intriguing topic for many researchers. However, achieving this through conventional methods is extremely challenging. In this paper, we present a microwave sensor designed to characterize cancerous cells based on their electrical properties. The proposed design features a split rectangular ring resonator placed on a flame-retardant four (FR-4) substrate. The sensor aims to achieve high sensitivity and quality factors through the unique characteristics of the metamaterial structure in the GHz frequency range. Through simulations and experimental measurements, we demonstrate the sensor's effective capabilities in detecting cancer. The high sensitivity for both simulation and measurement, is estimated at 10 %. The simulations and validation confirm that this biosensor exhibits significant frequency shifts and high sensitivity. Our proposed configurations highlight the microwave sensor's potential for detecting six different breast cancer cell types: HSS-2, HS578-T_nm, MCF-2, MCF-10A_nm, T-47D, and T-47D_nm. Based on the existing literatures, the sensitivity of the proposed sensor is determined to be greater.
Circuit Modeling of Dual Band MIMO Diversity Antenna for LTE and X-Band Applications Gambo A., Aminu; Kolawale, S. F.; Saminu, Sani; Danladi, Ali; Jabire, Adamu Halilu
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 9 No. 3 (2023): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i3.26272

Abstract

This paper presents a study on developing a dual-band antenna equivalent circuit model for X-Band and LTE applications. MIMO antennas play a crucial role in modern wireless communication systems, and understanding their impedance behavior is essential. This work proposes a dual-band lumped equivalent circuit model, utilizing gradient optimization based on antenna-simulated S-parameters in Advanced Design System (ADS). The four radiating elements of the MIMO antenna are accurately modeled, considering their geometry and the defected ground structure (DGS) effect, which enhances the antenna's isolation and low correlation coefficient (ECC). The calculated lumped equivalent circuit model is validated through rigorous simulation and measurement data, demonstrating consistency with the expected results. The experimental measurements show measured isolation exceeding 20 dB while achieving a maximum realized gain of 5.9 dBi and an efficiency of 87%. The developed model holds promise for improving the design and performance of MIMO antennas for various applications.