Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prediksi Awal Musim Hujan Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation Wibawanty, Dinda Rosyia; Simanjuntak, Presli Panusunan
PRISMA FISIKA Vol 9, No 2 (2021)
Publisher : Jurusan Fisika, Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/pf.v9i2.46283

Abstract

Informasi prediksi Awal Musim Hujan merupakan salah satu rekomendasi utama bagi petani dalam menentukan musim tanam. Oleh karena itu, penelitian ini bertujuan untuk memprediksi Awal Musim Hujan dengan menggunakan metode statistik yang telah banyak diuji kehandalannya yakni metode Jaringan Syaraf Tiruan (JST) Backpropagation. Arsitektur model JST yang digunakan terdiri dari 1 hidden layer, 2 hidden neuron dan 3 neuron input dengan fungsi aktivasi sigmoid biner. Penelitian dilakukan pada titik Stasiun Klimatologi Palembang dengan menggunakan data curah hujan harian periode 1981-2017. Prediktor yang digunakan meliputi suhu muka laut (SST), angin zonal 850 mb dan precipitable water (PW). Hasil penelitian menunjukkan prediksi curah hujan dasarian memiliki nilai korelasi antara 0.3 hingga 0.6 dengan RMSE berkisar antara 29 hingga 53 mm per sub-musim. Prediksi awal musim hujan mencapai kategori “Sesuai Prakiraan” sebesar 42.86%.   
Identifying Prolonged Zero Value Periods as Part of Quality Control on Daily Rainfall Records in East Java, Indonesia Wibawanty, Dinda Rosyia; Santikayasa, I Putu; Supari
Journal of the Civil Engineering Forum Vol. 11 No. 2 (May 2025)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.12720

Abstract

Ensuring the quality of surface rainfall records is crucial for obtaining highly representative data and facilitating further comprehensive analysis. Given that surface rainfall observations are predominantly conducted using conventional gauges, they are still susceptible to human errors that can significantly impact data quality. Among various types of errors that may arise, the issue of zero rainfall records is relatively overlooked. Prolonged zero rainfall periods may introduce uncertainty, as mistyped missing data can be erroneously replaced with zero values. The challenge in handling this issue is complicated by the absence of sufficient evidence to conclusively determine the validity or suspicion of consecutive zero rainfall periods. Therefore, we implemented the Affinity Index, altitude difference, and maximum distance approaches to detect and evaluate (validate or reject) any potential invalid sequences of prolonged zero values in the rainfall dataset. The Affinity Index quantifies the agreement of rain and non-rain events between two meteorological stations, functioning as a metric to evaluate the similarity of their rainfall patterns. Utilizing daily data from 682 rain gauge stations in East Java, Indonesia, spanning from January 2010 to December 2019, we identified two major concerns: zero rainfall accumulation during the peak of the rainy season (December/January/February) and extended dry spells lasting more than 180 days. To address the first issue, we flagged the corresponding station and excluded it from the dataset. For the second issue, we established reference stations for each target station to enable meaningful comparisons. The study found that 8.8% of stations detected zero rainfall accumulation during the peak of the rainy season. Regarding prolonged dry spells, we successfully assessed 98% of extended dry spell events in East Java. The majority of these events were considered valid, while around 3% were deemed dubious.