Ruslana, Zauyik Nana
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Application of the Arima Method to Prediction Maximum Rainfall at Central Java Climatological Station Ruslana, Zauyik Nana; Prihatin, Rudi Setyo; Sulistiyowati, Sulistiyowati; Nugroho, Kristiawan
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 4 (2024): Article Research Volume 8 Issue 4, October 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.13984

Abstract

The existence of extreme weather that is difficult to predict results in frequent hydrometeorological disasters. ARIMA is a prediction method that can capture trend patterns, seasonal cycles, and random fluctuations that are often found in patterned data. Although many samples of rain data collection points are needed to produce denser data, one point can be considered to represent an area that is not too large, such as Semarang City. This method is quite accurate for short-term forecasts, with the results of monthly maximum rainfall forecasts in 2023 showing varying MAPE values. For the 12-month forecast, prediction results range from fair to very accurate. The 7-month forecast also shows decent to very accurate results. However, the 5-month forecast shows less accurate results. This shows that ARIMA can be a useful method in forecasting monthly maximum rainfall, especially during the dry season. The application of ARIMA in Semarang City can help in planning hydrometeorological disaster mitigation, considering that the Semarang City area often experiences extreme weather that is difficult to predict. Thus, the use of ARIMA can provide significant benefits in preparing for and reducing the impact of hydrometeorological disasters in the region. In addition, with more accurate forecasts, the government and society can take preventative steps earlier, such as better water management, creating an adequate drainage system, and increasing public awareness of the threat of disasters. Therefore, this research emphasizes the importance of using reliable prediction methods such as ARIMA to improve preparedness in dealing with hydrometeorological disasters.
Rainfall Forecasting Using SSA-Based Hybrid Models with LSSVR and LSTM for Disaster Mitigation Ruslana, Zauyik Nana; Zuliarso, Eri
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.4963

Abstract

Accurate rainfall forecasting is crucial for addressing the increasing risk of hydrometeorological disasters, particularly in tropical regions such as Semarang City, Indonesia. However, conventional forecasting models often struggle with inaccurate data and observations. This study proposes a novel hybrid combination of SSA-NMF with LSSVR and LSTM, offering high-resolution rainfall forecasting over multiple monitoring stations, to predict daily rainfall. As a preprocessing step, 15 years of daily rainfall data from six observation stations were denoised and decomposed using Singular Spectrum Analysis (SSA) combined with Non-Negative Matrix Factorization (NMF). This approach effectively handled data with many zero values, identified seasonal patterns or high-rainfall locations, and extracted key patterns. The prediction models were trained and validated using parameters optimized through RandomizedSearchCV for LSSVR and Keras Tuner for LSTM. Model performance was evaluated using MSE, RMSE, MAE, and Nash-Sutcliffe Efficiency (NSE). The results showed that the SSA-LSTM model consistently outperformed SSA-LSSVR model, with the highest average NSE value being 0.9 across six monitoring locations in Semarang City. Furthermore, the predicted rainfall values were spatially visualized using Inverse Distance Weighting (IDW) interpolation within a Geographic Information System (GIS) environment, producing informative rainfall distribution maps that support early warning systems and disaster mitigation efforts. In conclusion, the hybrid approach combining SSA-NMF preprocessing with LSTM-based deep learning significantly improves the accuracy and reliability of daily rainfall forecasting. This novel SSA‑NMF + LSSVR/LSTM framework delivers high‑resolution, reliable rainfall forecasts that directly empower disaster risk reduction systems and readily transfer to similar climatic regions.