Claim Missing Document
Check
Articles

Found 5 Documents
Search

Studi Deskriptif Mengenai Kepatuhan Mahasiswa Universitas Negeri Padang yang Berdomisili di Kota Padang terhadap Protokol Kesehatan di Situasi Pandemi COVID-19 Fadhilah, Husni; Dirga Dwatra, Free
Jurnal Pendidikan Tambusai Vol. 5 No. 2 (2021): 2021
Publisher : LPPM Universitas Pahlawan Tuanku Tambusai, Riau, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (257.249 KB) | DOI: 10.31004/jptam.v5i2.1371

Abstract

Di situasi pandemi seperti saat ini, setiap individu dituntut untuk mematuhi protokol kesehatan guna melindungi diri dari infeksi COVID-19. Setiap individu memiliki kecenderungan untuk mengikuti maupun tidak mengikuti protokol kesehatan. Penelitian ini bertujuan untuk menggambarkan kepatuhan mengikuti protokol kesehatan mahasiswa Universitas Negeri Padang yang berdomisili di kota Padang di situasi pandemi COVID-19. Studi dilakukan dalam bentuk penelitian deskriptif dengan pendekatan kualitatif. Instrumen yang digunakan dalam penelitian yaitu kuisioner terbuka serta teknik analisis data menggunakan koding. Populasi pada penelitian ini yaitu mahasiswa Universitas Negeri Padang yang berdomisili di Kota Padang. Sampel penelitian yang diambil adalah mahasiswa semester 7 sebanyak 85 partisipan dengan menggunakan teknik sampling acak. Hasil pada penelitian ini menemukan bahwa mayoritas mahasiswa semester 7 UNP yang berdomisili di kota Padang mematuhi protokol kesehatan. Namun, masih terdapat mahasiswa yang tidak mematuhi protokol kesehatan yang disebabkan oleh adanya kepercayaan pada teori konspirasi dan kurangnya pengetahuan mengenai COVID-19.
Studi Deskriptif Mengenai Kepatuhan Mahasiswa Universitas Negeri Padang yang Berdomisili di Kota Padang terhadap Protokol Kesehatan di Situasi Pandemi COVID-19 Fadhilah, Husni; Dirga Dwatra, Free
Jurnal Pendidikan Tambusai Vol. 5 No. 2 (2021): 2021
Publisher : LPPM Universitas Pahlawan Tuanku Tambusai, Riau, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jptam.v5i2.1371

Abstract

Di situasi pandemi seperti saat ini, setiap individu dituntut untuk mematuhi protokol kesehatan guna melindungi diri dari infeksi COVID-19. Setiap individu memiliki kecenderungan untuk mengikuti maupun tidak mengikuti protokol kesehatan. Penelitian ini bertujuan untuk menggambarkan kepatuhan mengikuti protokol kesehatan mahasiswa Universitas Negeri Padang yang berdomisili di kota Padang di situasi pandemi COVID-19. Studi dilakukan dalam bentuk penelitian deskriptif dengan pendekatan kualitatif. Instrumen yang digunakan dalam penelitian yaitu kuisioner terbuka serta teknik analisis data menggunakan koding. Populasi pada penelitian ini yaitu mahasiswa Universitas Negeri Padang yang berdomisili di Kota Padang. Sampel penelitian yang diambil adalah mahasiswa semester 7 sebanyak 85 partisipan dengan menggunakan teknik sampling acak. Hasil pada penelitian ini menemukan bahwa mayoritas mahasiswa semester 7 UNP yang berdomisili di kota Padang mematuhi protokol kesehatan. Namun, masih terdapat mahasiswa yang tidak mematuhi protokol kesehatan yang disebabkan oleh adanya kepercayaan pada teori konspirasi dan kurangnya pengetahuan mengenai COVID-19.
Tree-based Ensemble Machine Learning for Phishing Website Detection Fadhilah, Husni; Maulana, Diky Restu; Utari, Rahayu
Komputika : Jurnal Sistem Komputer Vol 13 No 2 (2024): Komputika: Jurnal Sistem Komputer
Publisher : Computer Engineering Departement, Universitas Komputer Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/komputika.v13i2.12495

Abstract

Phishing remains a prevalent and perilous cyber threat in the digital age, exploiting human vulnerabilities to deceive individuals into disclosing sensitive information. This paper presents a method to achieve high accuracy in phishing website detection using Tree-based Ensemble Machine Learning techniques. Through rigorous experimentation and evaluation, we identified RandomForest and ExtraTrees as the top-performing models, achieving accuracy, precision, recall, and F1 scores all exceeding 98%. Additionally, our study highlights the significance of feature selection techniques in enhancing model performance, with thresholding methods proving effective in retaining relevant features for classification. By addressing imbalanced datasets and optimizing hyperparameters, our models demonstrate robust detection capabilities against phishing attacks. These findings contribute to the advancement of cybersecurity measures and underscore the potential of ensemble machine learning in combatting online threats, ultimately enhancing internet user security.
Systematic Literature Review on Medical Image Captioning Using CNN-LSTM and Transformer-Based Models Fadhilah, Husni; Utama, Nugraha Priya
Jurnal Masyarakat Informatika Vol 16, No 1 (2025): May 2025
Publisher : Department of Informatics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jmasif.16.1.73127

Abstract

Creating descriptive text from medical images to aid in diagnosis and treatment planning is known as medical image captioning, and it is a crucial duty in the healthcare industry. In this study, medical image captioning techniques are systematically reviewed in the literature with an emphasis on Transformer-based models and Convolutional Neural Network-Long Short Term Memory (CNN-LSTM). Aspects like as model designs, datasets, evaluation measures, and difficulties encountered in practical implementations are all examined in this paper. According to the results, Transformer-based models, specifically Swin Transformer and Vision Transformer (ViT), perform better than CNN-LSTM-based models in terms of BLEU, ROUGE, CIDEr, and METEOR scores, resulting in more accurate clinically relevant caption generation. However, there are still a number of issues, including interpretability, computing requirements, and data restrictions. Potential future routes to increase the efficacy and practical application of medical image captioning systems are covered in this paper, including hybrid model approaches, data augmentation techniques, and enhanced explainability methodologies.
Analisis Fraud Hexagon dalam Kasus Korupsi di PT Pertamina Patra Niaga Fitriani, Qonita; Sugiarti, Erika; Fadhilah, Husni; Munyani Putri, Fiqi; Novaria Misidawati, Dwi
Ekonosfera: Jurnal Ekonomi, Akuntansi, Manajemen, Bisnis dan Teknik Global Vol. 1 No. 2 (2025): April
Publisher : Yayasan Cendekia Gagayunan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63142/ekonosfera.v1i2.176

Abstract

This research is motivated by the rampant corruption cases in the State-Owned Enterprises (BUMN) environment, especially at PT Pertamina Patra Niaga. The main objective of this research is to identify and analyze the factors that cause corruption using the Fraud Hexagon analysis framework. The research method used is a descriptive qualitative approach, with data collection techniques through literature studies from various scientific literature, journals, mass media coverage, and relevant official documents. The results showed that corrupt practices at PT Pertamina Patra Niaga were influenced by six main elements in the Fraud Hexagon model, namely pressure, opportunity, rationalization, capability, arrogance, and collusion. Pressure comes from the lifestyle and job demands of the perpetrator; opportunities arise due to a weak supervisory system and imperfections in the procurement process; rationalization occurs through moral justification for acts of corruption. The capability of perpetrators who occupy strategic positions allows collusion with internal and external parties, which is exacerbated by arrogance. These six elements are interrelated and form a systemic pattern that supports corruption. This research confirms the importance of strengthening the internal control system, instilling an integrity-based organizational culture, and implementing a transparent and reliable reporting system to prevent corrupt practices within SOEs.