Tahabilder, Anik
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Efficient lane marking detection using deep learning technique with differential and cross-entropy loss Al Mamun, Abdullah; Em, Poh Ping; Hossen, Md. Jakir; Tahabilder, Anik; Jahan, Busrat
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i4.pp4206-4216

Abstract

Nowadays, researchers are incorporating many modern and significant features on advanced driver assistance systems (ADAS). Lane marking detection is one of them, which allows the vehicle to maintain the perspective road lane. Conventionally, it is detected through handcrafted and very specialized features and goes through substantial post-processing, which leads to high computation, and less accuracy. Additionally, this conventional method is vulnerable to environmental conditions, making it an unreliable model. Consequently, this research work presents a deep learning-based model that is suitable for diverse environmental conditions, including multiple lanes, different daytime, different traffic conditions, good and medium weather conditions, and so forth. This approach has been derived from plain encode-decode E-Net architecture and has been trained by using the differential and cross-entropy losses for the backpropagation. The model has been trained and tested using 3,600 training and 2,700 testing images from TuSimple, a robust public dataset. Input images from very diverse environmental conditions have ensured better generalization of the model. This framework has reached a max accuracy of 96.61%, with an F1 score of 96.34%, a precision value of 98.91%, and a recall of 93.89%. Besides, this model has shown very small false positive and false negative values of 3.125% and 1.259%, which bits the performance of most of the existing state of art models.
A deep learning approach for COVID-19 and pneumonia detection from chest X-ray images Musha, Ahmmad; Al Mamun, Abdullah; Tahabilder, Anik; Hossen, Md. Jakir; Hossen, Busrat; Ranjbari, Sima
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i4.pp3655-3664

Abstract

There has been a surge in biomedical imaging technologies with the recent advancement of deep learning. It is being used for diagnosis from X-ray, computed tomography (CT) scan, electrocardiogram (ECG), and electroencephalography (EEG) images. However, most of them are solely for particular disease detection. In this research, a computer-aided deep learning model named COVID-CXDNetV2 has been presented to detect two separate diseases, coronavirus disease 2019 (COVID-19) and pneumonia, from the X-ray images in real-time. The proposed model is made based on you only look once (YOLOv2) with residual neural network (ResNet) and trained by a vast X-ray images dataset containing 3788 samples of three classes named COVID-19 pneumonia and normal. The model has obtained the maximum overall classification accuracy of 97.9% with a loss of 0.052 for multiclass classification (COVID-19, pneumonia, and normal) and 99.8% accuracy, 99.52% sensitivity, 100% specificity with a loss of 0.001 for binary classification (COVID-19 and normal), which beats some current state-of-the-art results. Authors believe that this method will be applicable in the medical domain for the diagnosis and will significantly contribute to real life.