Claim Missing Document
Check
Articles

Found 1 Documents
Search

A deep learning approach for COVID-19 and pneumonia detection from chest X-ray images Musha, Ahmmad; Al Mamun, Abdullah; Tahabilder, Anik; Hossen, Md. Jakir; Hossen, Busrat; Ranjbari, Sima
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i4.pp3655-3664

Abstract

There has been a surge in biomedical imaging technologies with the recent advancement of deep learning. It is being used for diagnosis from X-ray, computed tomography (CT) scan, electrocardiogram (ECG), and electroencephalography (EEG) images. However, most of them are solely for particular disease detection. In this research, a computer-aided deep learning model named COVID-CXDNetV2 has been presented to detect two separate diseases, coronavirus disease 2019 (COVID-19) and pneumonia, from the X-ray images in real-time. The proposed model is made based on you only look once (YOLOv2) with residual neural network (ResNet) and trained by a vast X-ray images dataset containing 3788 samples of three classes named COVID-19 pneumonia and normal. The model has obtained the maximum overall classification accuracy of 97.9% with a loss of 0.052 for multiclass classification (COVID-19, pneumonia, and normal) and 99.8% accuracy, 99.52% sensitivity, 100% specificity with a loss of 0.001 for binary classification (COVID-19 and normal), which beats some current state-of-the-art results. Authors believe that this method will be applicable in the medical domain for the diagnosis and will significantly contribute to real life.