Claim Missing Document
Check
Articles

Found 3 Documents
Search

Naringin Effect on SARS-CoV-2 Pseudovirus Entry and Spike Mediated Syncytia Formation in hACE2-overexpressing Cells Septisetyani, Endah Puji; Prasetyaningrum, Pekik Wiji; Paramitasari, Komang Alit; Suyoko, Ahmad; Himawan, Alayna Lillahida Indri; Azzahra, Salsabila; Wisnuwardhani, Popi Hadi; Anam, Khairul; Ramadani, Ratna Dwi; Santoso, Adi; Ningrum, Ratih Asmana; Herawati, Neng; Rubiyana, Yana
HAYATI Journal of Biosciences Vol. 31 No. 2 (2024): March 2024
Publisher : Bogor Agricultural University, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.4308/hjb.31.2.336-347

Abstract

A molecular docking study demonstrates the interaction between naringin, a citrus flavonoid, with SARS-CoV-2 spike RBD. Nevertheless, in vitro investigation of the inhibitory effect of naringin on SARS-CoV-2 entry and syncytia models has yet to be carried out. We synthesized VSV∆G-GFP/Spike* pseudovirus (PSV) as a SARS-CoV-2 model by pseudotyping VSV∆G-GFP/S* in BHK-21 cells overexpressing the SARS-CoV-2 spike glycoprotein. In the SARS-CoV-2 PSV entry assay, we utilized CHO-K1 cells transfected with hACE2 plasmid, which were then treated with naringin and SARS-CoV-2 PSV/naringin. After 16-18 h incubation, PSV internalization represented by the GFP signal was observed under a fluorescence microscope. Immunofluorescence staining was also performed to probe the SARS-CoV-2 spike and confirm the PSV entry. We performed a syncytia assay using 293T cells co-transfected with SARS-CoV-2 spike/hACE2. Six hours after transfection, the cells were treated with naringin and incubated for another 16-18 hours. Then, we observed syncytia using a phase contrast microscope. Based on fluorescence foci quantification, the results indicated that naringin might inhibit SARS-CoV-2 PSV entry at a concentration of 100 µM (P<0.05). However, naringin did not prevent syncytia formation compared to solvent control. These PSV entry and syncytia assay results suggested that naringin potentially inhibited SARS-CoV-2 viral infection but not cell-to-cell viral transmission.
Simple Procedure for the Isolation of Mesenchymal Stem Cells from Different Parts of the Human Umbilical Cord Suyoko, Ahmad; Prasetyaningrum, Pekik Wiji; Septisetyani, Endah Puji
Indonesian Journal of Cancer Chemoprevention Vol 13, No 2 (2022)
Publisher : Indonesian Society for Cancer Chemoprevention

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14499/indonesianjcanchemoprev13iss2pp104-113

Abstract

The umbilical cord and placenta are both sources of mesenchymal stem cells (MSCs) that are promising for cell-based therapy. Furthermore, compared to other MSCs sources, they are easy to obtain with no invasive procedures. This study presents an adapted method for stem cell isolation from three different parts of the human umbilical cord, including Wharton’s jelly (WJ), cord lining (CL), and cord-placenta junction (CPJ). The isolation consists of sample preparation, tissue dissection into distinct anatomical regions, mincing and enzyme digestion, and explant culturing. In addition, we monitored when the cells migrated from the explant to the bottom of the cell culture dish and passed the cells after they became confluent. This study found that WJ cells were the first to reach confluence at Passage 0 (P0). In contrast, CL cells needed the longest time to get confluence at P0 but displayed faster cell growth after subsequent passages (P1-P2). In addition, CPJ cells showed growth retardation after P1 and P2. Altogether, we could extract the MSCs from umbilical cord tissue explants by using DMEM supplemented with 10% FBS, 100 IU/mL penicillin, and 100 μg/mL streptomycin as general cell culture medium and omitting the use of gentamicin. However, the MSCs may need a more complex specified medium for optimum cell regeneration for further cell expansion.Keywords: mesenchymal stem cells, umbilical cord, Wharton’s jelly, cord lining, cord-placenta junction.
Recloning and Characterization of C2C12 Myoblast and Its Clonal Derivatives Prasetyaningrum, Pekik Wiji; Septisetyani, Endah Puji; Suyoko, Ahmad; Santoso, Adi
Indonesian Journal of Cancer Chemoprevention Vol 12, No 2 (2021)
Publisher : Indonesian Society for Cancer Chemoprevention

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14499/indonesianjcanchemoprev12iss2pp99-105

Abstract

The C2C12 myoblasts are adult murine muscle stem cells which isolated after injury to induce muscle regeneration. The cells are widely used in pharmaceutical and biological researches to represent skeletal muscle cells. In our laboratory, we utilize the cells for glucose uptake assay after insulin treatment and studying the muscle regeneration. In this study we conducted recloning of C2C12 cells by limiting dilution cloning (LDC) and investigated the biological properties incuding cell proliferation, adhesion and differentiation of the clonal cells in comparison to the parental cells. Cell proliferation rate had been determined by WST assay, cell adhesion had been observed after cell detachment by EDTA and cell differentiation into multinucleated myotube had been investigated after induction and incubation with horse serum. As results, two clonal derivatives of C2C12 myoblast cells had been retrieved by LDC and used for cell assays. Moreover, the results indicated that parental cells showed faster proliferation rate and better differentiation ability than that of clonal cells. In the contrary the parental cells exhibited weaker adhesion rate than clonal cells. To conclude, C2C12 parental cells are better for performing the glucose uptake or muscle regeneration assays since they showed better differentiation capability.Keywords: C2C12 cells, cells differentiation, myoblast, myotube, recloning.