Claim Missing Document
Check
Articles

Found 2 Documents
Search

Nonlinear Finite Analysis of Structural Behavior of Brick Masonry-Infilled Reinforced Concrete Frames Kori Effendi, Mahmud; Hardawati, Astriana; Masjuki, Siti Aliyyah
Journal of the Civil Engineering Forum Vol. 11 No. 2 (May 2025)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.14966

Abstract

Earthquake disasters are one source of disaster that often causes buildings to experience total collapse or partial damage so that the structure may no longer be usable. Brick masonry wall construction, both unreinforced and reinforced masonry walls, is starting to be widely used in the world. To study and interpret the behavior of brick walls under various loads, the numerical modeling approach offers a cheaper way to understand the structural response accurately compared to experimental approaches which require greater costs. Three-dimensional finite element analysis of masonry walls was performed using MSC. Marc/Mentat software to verify the analysis results with experimental results on brick masonry walls with concrete frame constraints. For brick walls, concrete frames are modeled with 3D solid elements, while reinforcing steel uses 3D truss elements. The strain stress is multi-linear for concrete and bi-linear for reinforcing steel. The modified Kent–Parker model was used to model the multi-linear stress-strain of the macro element of a brick wall. The Linear Mohr-Coulomb plasticity and the flow plasticity of the isotropic hardening rule were used for concrete and brick walls. Contact analysis was carried out between both concrete beams and concrete columns with walls. The loading was applied in the plane with the force control. The result of the analysis shows that the deformed shape of the brick wall is different from the experimental results because of the complexity of contact analysis and the macro element modeling of brick elements. The contact that occurs shows that there is no separation between the brick wall and the concrete frame. Based on the results of finite element analysis, the initial stiffness is the same between the finite element analysis result and the experimental result.
NUMERICAL ANALYSIS OF STEEL MEMBER REMAINING COMPRESSIVE CAPACITY DURING SHIELDED METAL ARC WELDING Mushthofa, Malik; Hardawati, Astriana
JURNAL TEKNIK SIPIL Vol 13, No 1 (2024): Volume 13 Nomor 1 Mei 2024
Publisher : Jurusan Teknik Sipil, Fakultas Teknik, Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/jts.v13i1.38289

Abstract

This study investigates the influence of Shielded Metal Arc Welding (SMAW) welding parameters on the remaining compressive capacity of angle-shaped steel members used for structural strengthening. The analysis focuses on members with thin hot-rolled profiles (40.4 x 40.4 x 4.0 mm, 50.5 x 50.5 x 5.0 mm, and 60.6 x 60.6 x 6.0 mm). A finite element model simulates the heat distribution caused by welding, leading to a temperature increase within the member. Welding scenarios are simulated using various combinations of current strength and welding speed based on the specifications for electrode type E6013. The remaining compressive capacity is determined by segmenting the cross-section based on temperature intervals and considering the member's slenderness. The analysis reveals a clear correlation between welding parameters and compressive capacity loss. Employing a higher current and lower welding speed leads to a more significant reduction in capacity due to the resulting extensive heat-affected zone (HAZ). Conversely, the lowest current and highest speed scenario minimizes the HAZ, resulting in the highest remaining compressive capacity. The analysis demonstrates that the 40.4 x 40.4 x 4.0 mm member can retain up to 51.15% of its original capacity under these optimal conditions, while the 50.5 x 50.5 x 5.0 mm and 60.6 x 60.6 x 6.0 mm members can retain 57.79% and 75.78%, respectively. In contrast, the worst-case scenario employing high current and low speed significantly reduces the remaining capacity, with reductions down to 6.79%, 10.87%, and 10.54% for the respective member sizes. These findings highlight the importance of optimizing welding parameters to minimize the negative impact on the compressive capacity of steel members during strengthening operations.