Claim Missing Document
Check
Articles

Found 3 Documents
Search

Peran Artificial Intelligence dalam Pengembangan Kompetensi Mahasiswa Teknik Industri: Studi Kualitatif dengan Perspektif Ergonomi Kognitif dan Manajemen Risiko Aminuddin AP, Rezki Amelia; Hakim, Hakim; Andrie, Andrie; Eka Apsari, Ayudyah; Hadyanawati, Anindya Agripina
Journal Industrial Engineering and Management (JUST-ME) Vol. 6 No. 01 (2025): Journal Industrial Engineering and Management (JUST-ME)
Publisher : Program Studi Teknik Industri Fakultas Teknik Universitas Islam Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47398/just-me.v6i01.108

Abstract

Perkembangan teknologi Artificial Intelligence (AI) mendorong transformasi dalam pendidikan tinggi, khususnya dalam penguatan kompetensi mahasiswa Teknik Industri. Penelitian ini bertujuan untuk menganalisis peran AI dalam mendukung pengembangan kompetensi mahasiswa melalui perspektif ergonomi kognitif dan manajemen risiko. Studi ini menggunakan pendekatan kualitatif dengan desain studi kasus eksploratif pada tiga perguruan tinggi di Indonesia. Data dikumpulkan melalui wawancara mendalam dengan 12 informan, terdiri atas dosen, mahasiswa, dan praktisi industri, serta didukung oleh dokumentasi aktivitas pembelajaran berbasis AI. Variabel yang dikaji meliputi kemampuan analitis, pengambilan keputusan, beban kognitif, dan kesiapan teknologi. Analisis data dilakukan menggunakan metode tematik. Hasil penelitian menunjukkan bahwa AI berperan dalam meningkatkan pemahaman konseptual, kemampuan analitik, serta pengelolaan risiko kerja melalui simulasi dan sistem pembelajaran adaptif. Namun, ditemukan pula kendala berupa beban kognitif yang tinggi, kesenjangan digital, dan keterbatasan pelatihan ergonomi. Penggunaan AI yang tidak dirancang dengan memperhatikan ergonomi kognitif cenderung menimbulkan kelelahan mental. Oleh karena itu, diperlukan integrasi teknologi dengan pendekatan manajemen risiko dan desain antarmuka yang ergonomis. Penelitian ini menyimpulkan bahwa AI dapat memperkuat kompetensi mahasiswa Teknik Industri jika diimplementasikan secara adaptif dan terintegrasi dengan prinsip ergonomi kognitif.
Evaluating mental workload in manufacturing: A decision support perspective on production line operators Hadyanawati, Anindya Agripina
Jurnal Mantik Vol. 9 No. 2 (2025): August: Manajemen, Teknologi Informatika dan Komunikasi (Mantik)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/mantik.v8i6.6564

Abstract

Mental workload is the gap between the requirements of a task and a person's highest achievable capacity when working under motivated conditions. At PT. XYZ, the high production demands have resulted in significant overtime hours for employees. In one of the production buildings, employees are reported to work overtime almost daily. According to overtime records, individual employees experience up to 143 hours of overtime per month. This study investigates the mental workload of production line employees using the NASA-TLX questionnaire, followed by a cause-and-effect analysis. The NASA-TLX assessment classified all operators as experiencing high levels of mental workload. These findings were further analyzed through a cause-and-effect diagram, which revealed that high mental workload levels were influenced by human factors, equipment, methods, and the working environment.
Vendor Selection for Maintenance Using the Analytic Hierarchy Process (AHP) Method (Case study: PT. Global Sarana Mediakom) Elfitri, Suci; Hadyanawati, Anindya Agripina
JTI: Jurnal Teknik Industri Vol 11, No 2 (2025): December 2025
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/jti.v11i2.38845

Abstract

Objective vendor selection is crucial for a company as the right decision in choosing a vendor directly impacts service quality, operational cost efficiency, and business continuity. An unmeasured and subjective selection process can lead to risks such as decreased service quality, delays in task completion, and cost overruns, which can significantly harm the company. This study discusses a case study of vendor selection for maintenance at PT Global Sarana Mediakom using the Analytical Hierarchy Process (AHP) method. PT Global Sarana Mediakom is an information technology company specializing in data communication and internet services, with an operational network spanning more than 15 cities. This research focuses on addressing inefficiencies and subjectivity in the maintenance vendor selection process, which has traditionally relied on the lowest price or direct appointment without measurable evaluation. The AHP method is employed to evaluate and select the best vendor based on three main criteria: resource capability, completion time, and maintenance service cost. Data were collected through interviews and questionnaires with the company’s management. The data processing results indicate that Vendor A emerged as the best vendor with the highest priority score, followed by Vendor D, Vendor C, and Vendor B. The recommendations from this study include expanding the evaluation criteria and developing an AHP-based decision-support system to enable sustainable vendor management. Keywords: Analytical Hierarchy Process (AHP), Criteria, Multi-Criteria Decision Making (MCDM), Vendor Selection